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Abstract—Computer generated speech has improved drasti-

cally due to advancements in voice synthesis using deep learning

techniques. The latest speech synthesizers achieve such high level

of naturalness that humans have difficulty distinguishing real

speech from computer generated speech. These technologies allow

any person to train a synthesizer with a target voice, creating

a model that is able to reproduce someone’s voice with high

fidelity. This technology can be used in several legit commercial

applications (e.g. call centres) as well as criminal activities, such

as the impersonation of someone’s voice.

In this paper, we analyze how synthetic speech is generated and

propose deep learning methodologies to detect such synthesized

utterances. Using a large dataset containing both synthetic and

real speech, we analyzed the performance of the latest deep

learning models in the classification of such utterances. Our

proposed model achieves up to 92.00% accuracy in detecting

unseen synthetic speech, which is a significant improvement from

human performance (65.7%).

Index Terms—synthetic speech detection, deep neural net-

works, machine learning, text to speech

I. INTRODUCTION

Synthetic speech refers to any utterance generated by a
computer. With the advent of deep learning, synthetic speech is
getting closer to a natural sounding voice. Some of the state-
of-art technologies achieve such a high level of naturalness
that humans have difficulty distinguishing real speech from
computer generated speech. Moreover, these technologies al-
low a person to train a speech synthesizer with a target voice,
creating a model that is able to reproduce someone’s voice
with high fidelity.

Such technologies can have negative consequences, since
one could maliciously impersonate someone’s voice. An ex-
ample would be training a model with the voice of a famous
person and then using this model to generate an utterance with
malicious content to defame the person publicly.

During our experiments, we surveyed human subjects to
understand their susceptibility to impersonation using speech
generated by the latest deep learning technologies. Our results
show that, on average, one in three synthetic speech utterances
were perceived as real by our participants. This reinforces the
importance of a system that is able to distinguish between
human- and computer-generated speech.

In this paper, we analyze how synthetic speech is generated
and propose approaches to detect such synthesized utterances.
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The first step toward training a synthetic speech detection
system is to collect a significant amount of computer-generated
speech as well as real human speech. For our research we
created a dataset, called Fake or Real (FoR), which contains
more than 84,000 synthetic utterances, as well as more than
111,000 real utterances [1]. The FoR dataset is publicly
available to the community (http://bil.eecs.yorku.ca/datasets)
under the GNU GPLv3 license.

Next, we developed several potential solutions for a syn-
thetic speech detection classifier. Although previous research
has achieved very good results in the past [2], [3], they did not
include the latest state-of-art machine-learning TTS systems,
such as DeepVoice 3 [4] and Google Wavenet [5].

We achieve up to 92.00% accuracy on unseen utterances
using a deep-learning model, which is considerably higher than
using non-deep-learning methods (86.94%) and significantly
higher than average human accuracy (64.83%). These results
show that deep learning models can be a good solution for the
synthetic speech detection problem.

The remainder of this paper is organized as follows: Section
II presents an overview of the FoR dataset. In Section III,
we present a series of experiments with the objective of an-
alyzing and identifying potential models for synthetic speech
detection. Finally, Section IV concludes the paper.

II. THE FOR DATASET

Although several synthetic speech datasets were proposed
in the past [2], [3], [6], they do not focus on synthetic speech
generated by the latest deep learning-based speech synthesis
algorithms. Moreover, the number of utterances in previously
published datasets is typically not sufficient to train complex
neural network models [7].

For our experiments, we created a new synthetic speech
dataset. The Fake or Real (FoR) dataset is composed of more
than 87,000 synthetic utterances and 111,000 real utterances
from a large variety of individuals. It contains utterances from
state-of-the-art speech synthesis algorithms, i.e. utterances
with naturalness similar to real human speech. Also, our
dataset contains a large number of data points and, according
to our experiments, is sufficiently large to train complex
models, such as InceptionV3 [8], without overfitting.

In this paper. we use the following two versions of the FoR
dataset: a) for-2seconds. This version is balanced in terms
of gender and class and normalized in terms of sample rate,
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volume and number of channels. All files are truncated at 2
seconds, b) for-rerecorded. A re-recorded version of the for-

2seconds version, to simulate a scenario where an attacker
sends an utterance through a voice channel (i.e. a phone call
or a voice message).

More information about the collection and processing meth-
ods can be found at the FoR dataset publication [1].

III. EXPERIMENTS

With the dataset completed, the next step consists in per-
forming experiments to compare ways of detecting synthetic
speech. We start this section by presenting the performance of
humans in the synthetic speech detection task. In Section III-B
we present a series of experiments to analyze the accuracy
of several detection methods against the for-2second dataset.
Also, we present an analysis of a real-world attack scenario
using the re-recorded dataset (for-rerecorded). For both dataset
versions we also present the performance of the proposed
models on a totally unseen TTS algorithm.

A. Synthetic Speech Detection by Humans

As one of our goals is to present a synthetic speech detection
technique that performs better than humans, the first step is
to analyze the human performance in this task. Similar to a
Turing test, the idea is to play utterances and ask participants
to judge if the speech was generated by a computer or not.
Ten synthetic utterances and ten real utterances were randomly
selected from the FoR dataset for this task. A total of 29
participants were asked to listen to each audio just once
using their own devices and select the options “Fake” or
“Real” according to their guess. To ensure privacy, no personal
information was collected.

After the period of three weeks, the results were gathered,
compiled and analyzed. The average overall human accuracy
was 64.83%, 60.34% for synthetic speech and 69.31% for real
speech.

The numbers on this survey show that, on average, humans
would miss 1 out of 3 synthetic utterances. If considering
only high-performance algorithms (such as Microsoft TTS and
Amazon Polly), humans mistake synthetic for real about half
the time. This shows that the human perception of synthetic
speech is vulnerable to the latest speech synthesizers and that
an automated synthetic speech detector is needed.

B. Synthetic Speech Detection

With the human performance evaluated, the next step is to
propose and analyze the performance of a variety of synthetic
speech detection methodologies. For these experiments, we
use the for-2seconds version of the dataset to understand the
performance of both frequency analysis and deep learning
approaches.

The frequency analysis experiments consist in using tradi-
tional machine learning techniques to classify utterances on the
FoR dataset. This creates a baseline to compare the traditional
machine learning methods with the deep learning approaches.
These experiments are based on frequency analysis, i.e. the

extraction of a frequency representation and classification
using machine learning techniques.

The process for this experiment consists in extracting an
audio representation (such as an STFT matrix) for each
audio file, averaging the representation over time to obtain
a frequency-activation vector, inputing this vector into Weka
with the appropriate classes (synthetic/real) and comparing
the results of the several machine learning algorithms. Even
though during the averaging process the temporal information
is lost, this technique is still valid for several audio classi-
fication problems. The following audio representations were
chosen for this experiment: Fast Fourier Transform (FFT),
Short-time Fourier Transform (STFT), Mel-Spectrograms,
Mel-frequency Cepstral Coefficients (MFCC), and Constant-Q
Transform (CQT).

The audio files were processed using the Librosa audio
processing library, which was used to generate audio represen-
tations in the following formats: STFT (128 frequency bins),
STFT (1024 frequency bins), FFT (1024 frequency bins), Mel-
Spectrograms (128 frequency bins), Mel-Spectrograms (1024
frequency bins), MFCC (128 coefficients) and Constant-Q
Transform (1008 frequency bins). The matrix-shaped audio
representations (STFT, Mel-Spectrograms, MFCC and CQT)
were then averaged on a horizontal axis, meaning, the fre-
quency features were averaged over time. This results in one
vector for each utterance.

Fig. 1. Frequency Analysis Accuracy - FoR 2 Seconds

Figure 1 shows the results of the frequency analysis ex-
periments, in which it is possible to observe that using the
MFCC audio representation with the Random Forests method
achieves up to 98.54% accuracy on the validation dataset. This
shows that even though frequency analysis may not be the best
method, it is possible to achieve high accuracy using only
frequency information.

To better understand the classification accuracy and the
differences in the frequency spectrum, we decided to inves-
tigate which frequency ranges are more important for the
classification task. We used two attribute ranking methods,
Chi-Square [9] and Information Gain [10], to generate a
Frequency Classification Activation Map (FCAM).

Using the STFT (1024 bins) audio representation (due to its
frequency bin linearity) we utilized the Weka tool to calculate
the values of Chi-Square and Information gain for each of the
frequency bins. To help with the visualization of the results,
the frequencies were ordered (from 0Hz to 8kHz) and a colour
was attributed to each frequency: red designating high impor-
tance for classification, green designating low importance for
classification. The resulting frequency classification activation
map can be seen in Figure 2.
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Fig. 2. Frequency Classification Activation Map - FoR 2 Seconds

The results of this experiment show that high frequencies
(above 7.2kHz) are the most important frequencies to distin-
guish real speech from synthetic speech in its original form.

After performing the frequency analysis experiments, we
used a series of deep learning techniques for synthetic speech
detection. Following previous literature, we translate the audio
classification problem into an image classification problem by
using visual audio representations (i.e. spectrograms). This
conversion is useful since the majority of the deep learning
models available are designed for image classification.

The deep learning experiments consist of extracting audio
features (STFT, Mel-Spectrograms, MFCC and CQT) from
the FoR dataset (for-2seconds) and converting it to an image.
This process was done using a custom script and the Librosa
library. The resulting images were then used to train nine
selected architectures for a maximum of 50 epochs (early
stop if accuracy improvements were not seen in the last 10
iterations). The selected architectures are:

• 4-Layer fully connected neural network
• 2-Layer CNN with two extra fully connected layers
• 3-Layer CNN with two extra fully connected layers
• VGG16 [11] using the ImageNet weights and re-training

only the last 5 layers
• VGG19 [11] using the ImageNet weights and re-training

only the last 5 layers
• InceptionV3 [8] using the ImageNet weights and re-

training only the last 2 inception blocks (249 layers)
• ResNet [12] using the ImageNet weights and re-training

all the layers
• MobileNet [13] using the ImageNet weights and re-

training all the layers
• XceptionNet [14] using the ImageNet weights and only

re-training the last layer
The results can be seen in Figure 3, where it is possible

to observe that the VGG16 and VGG19 models with STFT
audio representations presented the highest validation accuracy
(99.96% and 99.94% respectively). As a side finding, we noted
that simpler models (such as 4-layer fully connected) were not
able to learn at all.

One interesting technique in deep learning is the genera-
tion of Classification Activation Maps (CAMs). These maps
show which areas of an image are more important for the
classification task. To create a general activation map, we
generated the individual CAM for each spectrogram in the
dataset and averaged the results into one CAM. The Average

Classification Activation Map (ACAM) for real and synthetic
speech of the for-2seconds dataset (VGG19 model, STFT
audio representation) can be seen in Figure 4.

From the average CAM it is possible to note that the
higher frequencies are the most critical area for classification,

Fig. 3. Deep Learning Accuracy - FoR 2 Seconds

Fig. 4. Average CAM for Real and Synthetic audio

especially for synthetic utterances. This may indicate that
synthetic speech generates audio mostly on the frequencies
related to speech, while real audio may contain data in higher
frequencies due to background noise or recording noises. Also,
due to the fact that synthetic speech is mostly generated at
16kHz sample rate, the signal amplitude in frequencies close
to 8kHz is low. This matches with the results of the frequency
analysis experiments, which showed that high frequencies play
an important role for synthetic speech detection.

Although the deep learning techniques presented the highest
accuracy (99.96%), the frequency analysis methodologies also
presented good results (98.54%). This indicates that there is
a clear distinction between the frequency spectrum of real
speech and synthesized speech.

C. Unseen Algorithm - Synthetic Speech Detection

To evaluate the generalization ability of the proposed mod-
els and to evaluate if frequency discrepancies are sufficient
to detect synthetic speech, we use the same methodology to
test the performance of the models trained in Section III-B
against the testing part of the dataset, which is a totally
unseen TTS algorithm (Google TTS Wavenet, not included in
the training/validation dataset). This experiment also simulates
how the models would react if an attacker creates a new TTS
system.

The first step is to observe the performance of frequency
analysis methodologies against the unseen algorithm. Follow-
ing the same process as the previous experiments, we generate
the audio representations for the testing dataset and use the
previously trained Weka models to classify the utterances of
the unseen algorithm.

Figure 5 shows the result of this analysis. One interesting
point to note is that the top performer audio representation
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Fig. 5. Frequency Analysis Accuracy - Unseen Algorithm

(MFCC) from the last experiment (Section III-B) had its
accuracy drastically reduced. This may indicate that for un-
seen algorithms, MFCCs may not be the best representation.
However, the CQT audio representation presented good per-
formance (94.01%) in the first experiment (Section III-B) and
now presents the best performance (86.94%).

The frequency classification activation map (using Chi-
Square and STFT) was generated for the testing dataset. The
frequency classification regions are similar to the ones in the
original experiment (Section III-B), meaning that even though
it is a new algorithm, the biggest differences between synthetic
audio and real audio are still on the high frequencies.

Fig. 6. Frequency Analysis Accuracy - Learning a New Algorithm

To investigate if the models would be able to learn a new
algorithm, we added 200 utterances (approximately 7 minutes)
of the testing dataset into the training dataset and re-evaluated
the testing dataset. The results can be seen in Figure 6, which
shows that the models were able to adapt to the new TTS
algorithm and deliver high accuracy (99.17%).

To verify if deep learning algorithms perform better than
frequency analysis on unseen algorithms, we used the same
deep learning analysis process as the previous experiments
on the testing part of the dataset. We used the deep learning
models trained in Section III-B to classify the Google Wavenet
TTS utterances.

Fig. 7. Deep Learning Accuracy - Unseen Algorithm

Figure 7 shows the results of this experiment. Similarly
to the Frequency Analysis methodology, the accuracy also
decreased but stayed significantly high (92.00% using CQT
and MobileNet). One interesting observation is that STFT,
which in the previous experiment (Section III-B) was the

top performer, is now the audio representation with lowest
accuracy. This may indicate that in unseen cases, CQT audio
representation is the best option to be adopted.

To investigate if the models would be able to learn a new
algorithm, we added 200 utterances (approximately 7 minutes)
of the testing dataset into the training dataset. Then, using
the audio representation that had the biggest impact by the
unseen synthetic voice (STFT), we re-trained all the models to
evaluate the testing accuracy. The results show a considerable
improvement in the testing accuracy, achieving up to 99.82%
(RESNET) and 98.99% (VGG19). This shows that although
the proposed deep learning models had a significant decrease
in performance with a fully unseen algorithm, only a small
amount of data is required from the new TTS system to regain
the original performance on the deep learning models.

In this experiment it is possible to observe that the behaviour
of deep learning models was very similar to the frequency
analysis methodologies. The accuracy drops with an unseen
TTS algorithm, but it is regained when new utterances are
added to the training data. However, throughout the whole
experiment, the accuracy presented by the top performing deep
learning methodology is higher than the one presented by the
frequency analysis methodologies.

D. Rerecorded Synthetic Speech Detection

To evaluate the efficiency of the aforementioned detection
approaches in a real-world scenario where an attacker plays
a synthetic utterance through a voice channel, we apply them
to the re-recorded dataset (for-rerecorded). This experiment is
also important to test the accuracy of our models with a dataset
where the differences in the high frequencies are reduced due
to the rerecording process.

Using the same process as in previous experiments, we
generated the frequency analysis results for the for-rerecorded
dataset. The results from Weka are presented in Figure 8,
which shows that the highest performance (95.05%) is with
the MFCC audio representation and Random Forests, the same
as the for-2second results (Section III-B). It is also possible
to note a small drop in accuracy when compared to the
for-2seconds result (from 98.54% to 95.05%). The presented
numbers indicate that even though the frequencies were more
uniform, the algorithms were still able to identify the reduced
frequency differences.

Fig. 8. Frequency Analysis Accuracy - FoR Rerecorded

To better understand the decline in the accuracy, a binary
classification experiment was conducted with original syn-
thetic utterances and re-recorded synthetic utterances. Then,
we used traditional frequency analysis techniques, such as
Naive Bayes and Random Forests, to perform the classifica-
tion. The result was a classification accuracy of 99.86% (using
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random forests), showing that there are significant differences
between original and re-recorded audio.

The main hypothesis for the decline in the accuracy is
related to the fact that the re-recording process reduces the
frequency discrepancies between synthetic and real speech,
especially in high frequencies.

Using the same process presented in Section III-B, we
analyzed the impact of speech re-recording for deep learning
models. The idea is to test if deep neural networks are able to
distinguish real and synthetic utterances in re-recorded audio.

Using the re-recorded dataset presented in Section III-D
(for-rerecorded), we trained and evaluated the deep learning
models selected for this research. Figure 9 shows the result of
this analysis, where it is possible to observe that the highest
validation accuracy (VGG19 and STFT, 99.63%) is similar to
the highest accuracy on the for-2second dataset (VGG16 and
STFT, 99.96%). This shows that the re-recording process had
almost no impact on the performance of the deep learning
methodologies.

Fig. 9. Deep Learning Accuracy - FoR Rerecorded

To better understand what is being learned by the model,
the ACAMs were generated for both synthetic and real audio
(using STFT and VGG19), shown in Figure 10. The interesting
point is that the model now presents a smoother classification
area, showing that the discrepancies in the higher frequencies
are not as drastic as in the for-2second dataset.

Fig. 10. Averaged Class Activation Maps (ACAMs) on Re-recorded Dataset

Since in the rerecorded dataset the frequency spectrum is
more uniform between real and synthetic speech, the frequency
based approaches were more impacted by the rerecording pro-
cess, while the deep learning based methods were almost not
impacted by the rerecording process and delivered an accuracy
similar to the original for-2second dataset. This experiment
shows the advantages of using deep learning techniques over
frequency based ones.

E. Unseen Algorithm - Rerecorded Synthetic Speech Detection

To evaluate the generalization capabilities (through an un-
seen TTS algorithm) in a frequency-uniform dataset (through
rerecording) we analyzed the performance of the proposed
methodologies against the rerecorded version of the testing
dataset. Following the same methodology as in the previous
experiments, we generated the comparison between audio
representations and classification models. The comparison can
be seen in Figure 11.

Fig. 11. Frequency Analysis Accuracy - Unseen FoR Rerecorded

As seen in Figure 11, the highest accuracy (85.78%, CQT
and Random Forests) is considerably lower than the original
for-2second dataset (98.54%, MFCC and Random Forests).
This shows that the frequency analysis method is significantly
impacted by the rerecording of an unseen TTS algorithm.

To better understand which frequencies are more relevant
for the classification process, we generated the Frequency
Classification Activation Map (FCAM) using STFT for the
unseen utterances of the re-recorded dataset. The FCAM can
be seen in Figure 12.

Fig. 12. Frequency Classification Activation Map - Unseen FoR Rerecorded

The FCAM shows a shift in the high-relevance classification
area (red and orange areas of the FCAM) when compared to
the FCAM presented for the for-2second dataset (in Section
III-B). In this experiment, the high frequencies were not the
main factor for classification, potentially due to the fact that
the rerecording process reduces the discrepancies on high
frequencies. Interestingly, the main classification area was
shifted to low frequencies (around 140Hz), which may justify
the decrease in the accuracy.

We performed similar experiments with the deep learning
models. The highest accuracy across this experiment was
91.42% (CQT and VGG19), which is reduced when compared
to the for-2second dataset but is still high (over 90%). This
shows that although the deep learning algorithms were affected
by the fact that the utterances were unseen and rerecorded,
the best deep learning performer still performed well on the
synthetic speech detection task. It is also interesting to note
that the shift in the best accuracy for audio representation,
from STFT to CQT, is the same shift observed in the non-
rerecorded algorithm. This is one more piece of evidence that
for an unseen TTS algorithm, CQT is the best performing
audio representation.

To visualize what is being learned by the model, the
ACAM for the VGG19 model (CQT audio representation) was
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Fig. 13. Averaged Class Activation Maps (ACAMs) on Unseen Re-recorded
Dataset

generated and can be seen in Figure 13. Similarly to what was
observed in the frequency analysis, the main classification area
is now the lower frequencies. This aligns with the previous
observation that the rerecording process smooths out the high
frequencies, which leads to a shift on the classification areas
in the ACAM.

This experiment shows a clear distinction between the
performance of frequency analysis and deep learning method-
ologies. While the best accuracy for frequency analysis had
a decline of 12.76% in accuracy, the best accuracy for deep
learning had a decline of only 8.54%. This means that deep
learning models are 66.92% (8.54% over 12.76%) more ef-
fective than frequency analysis in the detection of unseen
synthetic speech in a re-recorded environment.

It is possible to observe a significant drop in certain audio
representations: MFCC for frequency analysis and STFT for
deep learning. This confirms our theory that there is no
generalized best audio representation for synthetic speech
detection and each case should adopt its own appropriate
audio representation. For deep learning approaches in seen
data, the STFT audio representation is recommended, while
for unseen data CQT is recommended. For frequency based
approaches, MFCC is recommended for seen data while CQT
is recommended for unseen data. It is also interesting to
note that CQT presented the lowest averaged accuracy drop
in all experiments, which may indicate that CQT is the
most reliable audio representation if the type of the data
(original/rerecorded, seen/unseen) is unknown.

Across all our frequency analysis experiments, it was pos-
sible to note that Random Forests presented the best perfor-
mance in 3 out of 4 experiments (being only 0.61% behind in
the unseen rerecorded experiment), meaning that it may be the
best frequency based model for synthetic speech detection.

Across all deep learning experiments, the VGG19 model
presented the best performance in 2 out of 4 experiments,
being behind only 0.06% in the first experiment and 1.28%
behind on the second experiment. This shows that VGG19
presents an overall good performance and may be the best
classifier model for synthetic speech detection.

IV. CONCLUSION

As synthetic speech generation improves, the need for
synthetic speech detection speech increases. With this work
we hope to stimulate further research in synthetic speech
detection. In our research, we were able to achieve a high
level of accuracy for synthetic speech detection (90%+).
Moreover, we demonstrate that deep-learning based techniques
present higher accuracy across all our testing scenarios as
well as being better at adapting to new TTS systems. This
might indicates that such techniques are more suitable for the
synthetic speech detection.
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