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Abstract—With the advancements in deep learning and other
techniques, synthetic speech is getting closer to a natural sound-
ing voice. Some of the state-of-art technologies achieve such
a high level of naturalness that even humans have difficulties
distinguishing real speech from computer generated speech.
Moreover, these technologies allow a person to train a speech
synthesizer with a target voice, creating a model that is able to
reproduce someone’s voice with high fidelity.

In this paper, we introduce the FoR Dataset, which contains
more than 198,000 utterances from the latest deep-learning
speech synthesizers as well as real speech. This dataset can
be used as base for several studies in speech synthesis and
synthetic speech detection. Due to its large amount of utterances,
it is pertinent for machine learning studies, since it is able to
train even complex deep learning models without overfitting.
We present several experiments using this dataset, including a
deep learning classifier that reached up to 99.96% accuracy in
synthetic speech detection.

Index Terms—synthetic speech detection, deep neural net-
works, machine learning, text to speech

I. INTRODUCTION

Synthetic speech refers to any utterance generated by a
computer. With the advancements in deep learning and other
techniques, synthetic speech is getting closer to a natural
sounding voice. Some of the state-of-art text-to-speech (TTS)
technologies achieve such a high level of naturalness that even
humans have difficulty distinguishing real speech from com-
puter generated speech. Moreover, these technologies allow
a person to train a speech synthesizer with a target voice,
creating a model that is able to reproduce someone’s voice
with high fidelity.

Such technologies can have negative consequences, since
one could maliciously impersonate someone else’s voice. An
example would be training a model with the voice of a famous
person and then using this model to generate an utterance with
malicious content to defame the person publicly. As a result, it
is crucial to develop techniques that discriminate between real
speech and synthetic speech. For such techniques that involve
machine learning, it is important to have an appropriate dataset
for training.

In this paper, we present the Fake or Real (FoR) Dataset,
which contains more than 87,000 synthetic utterances as well
as more than 111,000 real utterances. Such a dataset is
fundamental for research in synthetic speech detection, since it
contains enough data to train the most complex deep learning
algorithms.
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Although previous researchers also generated datasets con-
taining real and synthetic utterances [1], [2], for this dataset
we focus on the latest speech synthesis technologies using
neural network architectures. We include not only open-source
systems, but also commercial tools that can be used to generate
synthetic speech.

To create this dataset, we conducted extensive research
on the latest open source and commercial methodologies in
speech synthesis. After these approaches were identified, we
used a special set of phrases to generate utterances from each
TTS system. That resulted in more than 87,000 synthetic
utterances from a total of 33 synthesized voices.

We also collected real speech utterances for the FoR dataset.
Collecting real utterances is a complex task: one needs to
ensure a variety of recording methods, a variety of speaker
genders, a variety of speaker ages, a variety of accents and
even a variety of microphones used for recording. This variety
is required to avoid unintentional bias in the training data that
would result in classification methods not generalizing well to
unseen TTS systems. We identified and collected utterances
from a series of open source speech datasets as well as other
sources of real speech, such as TED Talks and Youtube videos.

The dataset is published in four versions. The first version
contains the files as collected from the speech sources, without
any modification. The second version contains the same files
but balanced in terms of gender and class and normalized in
terms of sample rate, volume and number of channels. The
third version is based on the second one, but with the files
truncated at 2 seconds. The last version is a rerecorded version
of the dataset, to simulate a scenario where an attacker sends
an utterance through a voice channel (i.e. a phone call or a
voice message).

We also present a series of experiments regarding synthetic
speech detection and an analysis of the main differences
between synthetic speech and real speech. Our first experiment
consists in training machine learning architectures to detect
synthetic speech. We achieve up to 99.96% validation accuracy
and 92.00% testing accuracy.

We also analyze the impact of noise on the synthetic
speech detection task and we identify that the classification
accuracy stays high up to 35% noise ratio. After that, it
starts to drastically decrease. After 45% noise/signal ratio, the
machine learning models are not able to identify synthetic
audio anymore.



Another experiment showed that synthetic speech and real
speech present differences in terms of audio brightness, depth,
roughness and hardness. Those differences can also be used
as an additional input in the synthetic speech detection task.

The remainder of this paper is organized as follows: In the
next section, we present an overview of the current research
on synthetic speech datasets and synthetic speech detection.
In Section III we formally introduce the FoR Dataset and its
versions. In Section IV we present a series of experiments
utilizing the FoR Dataset. In the last section, we present a
conclusion for our work and discuss potential future work.

II. BACKGROUND

A. Synthetic Speech Datasets

Automatic Speaker Verification (ASV) solutions are authen-
tication solutions that use the human voice as a mean of
authentication. A replay spoofing attack consists in recording
someone’s voice and replaying it in an attempt to fool the
ASV system and gain access to a system. Motivated by this
threat, researchers from across the globe created a dataset
containing real voices and spoofed voices [3]. With this
dataset in mind, the same researchers created a challenge,
called ASVSpoof Challenge, so the research community could
study and propose methodologies that solved the ASV replay
spoofing attack. One of the most cited versions of this dataset
is the ASVSpoof2015 dataset, which contains not only spoofed
utterances, but also computed-generated speech. The synthetic
utterances were generated using traditional text-to-speech sys-
tems and voice-conversion systems, which lack in naturalness
of speech. The ASVSpoof2015 dataset does not include the
latest deep-learning-based synthetic speech systems.

In a paper published in early 2016, researchers discuss
methodologies for identifying spoofing attacks using auto-
mated solutions [4]. In their study, they analyze the effec-
tiveness of 5 TTS systems as well as 8 voice-conversion (VC)
systems against three ASV systems. Their conclusion is that
the ASV systems are vulnerable to these spoofing attacks.
However, adding their proposed spoofing detection system can
lower the false-acceptance rates to less than 1%. The study
brings several interesting findings to the research community.
Apart from the key contribution of developing an anti-spoofing
system, the authors also published the Spoof and Anti-Spoof
dataset, that includes not only spoofed utterances, but also
computer-generated speech. However, it is important to note
that the TTS and VC systems utilized in this research are
outdated compared to the current state-of-art speech-synthesis
systems.

B. Synthetic Speech Detection

In mid 2017, Paul et al. proposed a set of short-term spectral
features that can drastically improve the accuracy of synthetic
speech detection [5]. The authors provide a thorough analysis
of the differences between synthetic speech and real speech
and identify interesting patterns, such as the fact that lower
frequencies (<1kHz) and high frequencies (>7kHz) are the

most useful frequencies for discrimination between synthetic
and real speech.

A good portion of the synthetic speech detection studies
focuses on extracting frequency information and using this
information to train a classifier. This kind of approach usually
assumes frame-by-frame independence and does not learn
long-term temporal information. However, a study published
in 2013 shows that having temporal data increases the perfor-
mance of synthetic speech classifiers [6]. This is an indication
that using a full audio representation with a deep learning
approach may result in higher performance than using only
frequency-based methodologies.

C. Neural Networks and Deep Learning

The idea behind neural networks goes back to 1943, when
researchers created a computational model called threshold
logic [7]. The model consists of a collection of connected
units that perform logic tasks. Each unit, also called neuron,
is composed by an input, an activation function and an output.
The neurons can be interconnected using their inputs/outputs
and a weight factor. This forms a computational network, also
called, artificial neural network. The real potential of neural
networks was only explored later in 1975, when researchers
from Harvard University published their back-propagation
algorithm [8]. This algorithm enabled neural networks to
efficiently learn by adjusting the weights in each node, making
it possible to train complex neural network models using
supervised data. The back-propagation algorithm is still in use
today, decades after its creation.

When first published in the 80’s, the idea of Convolutional
Neural Networks (CNNs) was a groundbreaking finding [9].
More than a decade later, researchers were able to use this
architecture to ingest a multi-dimensional input (e.g. an image)
and learn dimensional/positional relations between the pixels
[10], which enable the neural networks to recognize shapes
and patterns.

One of the main publications related to CNNs is an article
from 2012 by Alex Krizhevsky, Ilya Sutskever and Geoffrey
E. Hinton regarding the use of convolutional neural networks
for image classification [11]. In their publication, the authors
discuss the use of an eight-layer deep convolutional neural
network over the ImageNet dataset [12] to detect and classify
objects in pictures.

D. Synthetic Speech Detection Using Deep Neural Networks

With the increase in the popularity of Deep Neural Networks
(DNN) solutions, Yu et al. published a paper regarding the use
of DNNs for speech spoofing detection [13]. The main idea is
to use DNNSs to extract dynamic acoustic features and classify
an utterance as real or spoofed. The research shows that
this proposed methodology overperforms the traditional static
feature analysis with GMM classifiers. Previous studies [14],
[15] show that dynamic acoustic features (such as dynamic
filter banks, dynamic MFCCs, and dynamic linear prediction
cepstral coefficients) are better candidates for spoofing detec-
tion than traditional static features (such as magnitude-based



features and cosine normalized phase features). Based on that
and the fact that DNNs are well known for their capabili-
ties of extracting dynamic features, the researchers decided
to implement a 5-layer deep neural network in conjunction
with 5 different dynamic filter-bank-based scoring methods to
perform classification on the AVSpeech2015 dataset. Although
this dataset does not cover the latest deep-learning based TTS
systems (such as DeepVoice3), it is a good starting point to
train a DNN to detect spoofed speech. The results of the
experiment show that DNNs with dynamic features present
better performance than the previous methodologies using
static features and GMM models.

In mid-2017, Zhang et al. published a paper regarding
their investigation of deep-learning frameworks for speaker
verification anti-spoofing [16]. In their research, the authors
propose the use of CNNs in conjunction to RNNs to iden-
tify synthetic speech. Using as baseline the ASVSpoof2015
dataset, the proposed methodology presents the state-of-the-
art performance for an end-to-end single system.

Xiaohai Tian and Xiong Xiao published a paper regarding
their work on spoofed speech detection using temporal convo-
lutional networks [17]. Their idea is to use a single convolu-
tional neural network to classify an utterance instead of using
handcrafted feature extractors with traditional machine learn-
ing approaches. The proposed architecture is tested against
the ASVspoof2015 dataset and shows a relevant improvement,
especially in unseen spoofing attacks and in temporal-based
speech synthesizers.

Muckenhirn et al. explored the use of CNNs for end-to-
end speech spoofing detection [18]. Although the proposed
approach is not new and uses the outdated ASVspoof2015
dataset, the authors present an interesting analysis of what
features are being learnt by the model. In this analysis,
the authors show that the proposed architecture is mainly
learning discriminative information from the lower and higher
frequencies, which matches with previous studies that used
manual feature extraction with traditional machine-learning
algorithms. This shows that the DNN is able to extract
frequency features right from the raw audio and that the DNN
learns from the same spectrum regions than the traditional
approach, with a similar or higher accuracy.

III. THE FOR DATASET

Several datasets containing synthetic speech have been pub-
lished in the past [2], [3], [13]. However, there are many rea-
sons that necessitate the introduction of the dataset presented
in this paper. To start with, the vast majority of the utterances
in existing datasets have not been generated from the latest
deep-learning-based speech synthesis algorithms. Moreover,
the number of utterances in previously published datasets is
typically not sufficient to train complex neural network models
[19]. Finally, the majority of the published datasets focuses
on the detection of spoofed utterances for automatic speaker
verification systems.

In this paper, we introduce the Fake or Real (FoR) dataset,
which is composed of more than 87,000 synthetic utterances as

well as more than 111,000 real utterances (from a large variety
of individuals). The main difference between the FoR dataset
and previous works is that our dataset contains utterances from
state-of-the-art speech synthesis algorithms, i.e. utterances
with naturalness similar to real human speech. Also, our
dataset contains a large number of data points and, according
to our experiments, it is enough to train complex models, such
as InceptionV3 [20], without overfitting.

The FoR dataset is under GNU GPLv3 license and is
publicly available to the community'.

A. Synthetic Speech Collection

We begin by describing the part of the FoR dataset that
contains synthetic utterances. As previously discussed, the use
of deep learning for speech generation has increased in the
past few years. With that in mind, we identified and collected
utterances from the latest methodologies in speech synthesis,
both open source and commercial. The chosen TTS systems
and the number of voices and utterances can be seen in Table
L.

TABLE I
TTS SYSTEMS AND UTTERANCES

Source Voices | Total Utterances

Deep Voice 3 1 2645
Amazon AWS Polly 8 21160
Baidu TTS 3 7935
Google Traditional TTS 1 2645
Google Cloud TTS 2 5290
Google Wavenet TTS 2 5290
Microsoft Azure TTS 16 42320

[ Total: [ 33 ] 87285 |

With the scope of TTS systems defined, our next step was
to identify a list of phrases that can be used to generate
utterances. One of the main concerns when creating a dataset
is to have a high variety of data points to ensure that the
underlying distribution is well represented in the dataset. With
that in mind, it was important to choose a high variety of
phrases to be used as input to the TTS systems.

We utilized a phrase dataset’ that is commonly used in
natural language translation. This dataset is open to the public
and contains over 150,000 English phrases and their French
translation. Since our work focuses on the English language,
the French part of the dataset was discarded, leaving us with
a dataset of English phrases with a high variety of grammati-
cal structures (passive/active phrases, simple/complex phrases,
short/long phrases, affirmative/question phrases, etc.). The
phrases were filtered to remove duplicates, as well as phrases
surpassing 30 words.

The resulting phrase dataset was then randomly divided into
33 phrase buckets, containing 2645 phrases each. Each phrase
bucket was used by only one TTS voice. This ensures that
there are no repeated utterances in the dataset, minimizing

Thttp://bil.eecs.yorku.ca/datasets
Zhttps://www.kaggle.com/percevalw/englishfrench-translations/kernels



the risk of models learning specific words/phrases instead
of a generalized model to differentiate between real and
synthetic speech. With the phrase buckets ready, we then
generated utterances from each TTS system using their APIs,
as described below.

The DeepVoice 3 [21] system is an end-to-end TTS solution
developed by Baidu Labs. This model is capable of generating
an audio representation (spectrogram) given a phrase as input.
This representation can then be transformed into an utterance
using an algorithm such as Griffin-Lim, or a Wavenet architec-
ture. For this collection task, we obtained an implementation
of the DeepVoice 3 system® which was then trained using
the utterances from the LJSpeech speech dataset (see Section
III-B). The reason for using LJSpeech for both generating
synthetic utterances as well as for the real utterances part of
the dataset is to increase the likelihood that models will learn
real characteristics of synthetic and real speech, since using
the same voice for both classes minimizes the chance of the
model classifying based on voice properties (pitch, intensity,
etc.). After the model was trained on the LJSpeech dataset,
one phrase bucket was used to generate 2645 utterances.

The original Google TTS is one of the most known text-
to-speech systems. It is present in several Google products,
such as Google Translate* and Google Home. Although this
system does not utilize the latest deep learning techniques, it
is a popular TTS system thus it is included in our research. As
Google TTS is a proprietary system, it is not possible to get
access to its source code. However, it is possible to use API
calls to extract audio from the system. By creating a script that
sends an API request per phrase and saves the returning result,
we were able to generate 2645 utterances from this system.

With the increase in the popularity of cloud TTS services,
Google created its own cloud TTS service’. This service
uses the latest deep learning techniques in conjunction with
manual tuning to provide a cloud TTS service. The resulting
utterances have a high naturalness, approaching human-like
speech. Moreover, the system also accepts a SSML® (Speech
Synthesis Markup Language) file as input, meaning that one
can define several speech variables, such as emphasis and
break times. To extract utterances from the cloud API, first it
was required to create a Google Cloud account. Then, it was
required to create a project key so the API can be accessed.
After having the keys created, it was required to install the
Google SDK and create a script that reads a file containing
phrases and retrieves the utterances from the Google Cloud.
With that done, 5290 utterances were extracted in two different
voices (2645 utterances per voice).

Similarly to the Google Cloud TTS, Google released a
premium version of its TTS system. This premium version,
called Google Cloud Text-to-Speech with Wavenet, uses a
mixed model using deep learning techniques in conjunction
with a Wavenet model to generate the utterances. The system

3https://github.com/r9y9/deepvoice3_pytorch
“https://translate.google.com/
Shttps://cloud.google.com/text-to-speech/
Shttps://www.w3.org/TR/speech-synthesis11/

also accepts as input SSML files, meaning that precise speech
can be generated. This improved model is able to generate
utterances with very high naturalness, where the synthesized
speech is almost indistinguishable from real speech. The
process of utterance extraction on the Google Cloud TTS
Wavenet is very similar to the non-premium Google Cloud
TTS: First it is necessary to obtain API keys, then install the
Google SDK and finally use a script to iterate over a text file
and obtain the utterances through the API. With that done,
5290 utterances were extracted in two different voices (2645
utterances per voice).

Amazon AWS Polly’ is one of the most known TTS
systems. Similar to other commercial solutions, this service
allows the synthesis of utterances using the latest deep learning
techniques. At the moment the FoR dataset was generated, 8
English voices were available in a variety of accents (Amer-
ican English, British English, Australian English and Indian
English). One of the main advantages of Amazon Polly is that
it is able to synthesize natural speech with high pronuncia-
tion accuracy (including abbreviations, acronym expansions,
date/time interpretations, and even homograph disambigua-
tion). To synthesize utterances using Amazon Polly, it is
first necessary to create an Amazon AWS account. With the
account created, it is possible to generate an API key that
enables the access to the Polly TTS system. A script was
created to read phrases from a text file and interact with
the Polly API to retrieve the utterances. A total of 21160
utterances were extracted from this system, 2645 utterances
for each one of the 8 speakers.

Similar to Amazon and Google, Microsoft recently released
its text-to-speech solution. Called Microsoft Azure Text-To-
Speech?, this service is capable of generating utterances from
input phrases. The interesting part about Microsoft TTS is that
it provides 16 voices just for the English language (in a variety
of accents). Moreover, the Microsoft TTS system allows any
person to upload samples of their voice so the model can
learn and reproduce their voice. This allows a much more
customized experience for customers, since one can have their
own voice being spoken in a system. The process to extract
utterances from the Microsoft TTS system is fairly simple:
First, you create an API key to access the service. Then,
using an HTTP request, one can send a phrase to the system
that answers with an MP3 file. To automate the collection, a
script was created to read an input file (containing phrases) and
submit POST requests to the Microsoft TTS server. A total of
42,320 utterances were synthesized from the Microsoft TTS
system, 2645 utterances for each one of the 16 voices.

Although Baidu published research papers detailing the use
of machine learning for TTS (DeepVoice 1 [22], Deep Voice 2
[23] and DeepVoice 3 [21]), they also developed a commercial
system (which is sold as a service) that has higher performance
than the open source code released on the internet. This

https://aws.amazon.com/polly/
8https://azure. microsoft.com/en-us/services/cognitive-services/text-to-
speech/



service, called Baidu Cloud TTS? is able to generate utterances
given text as input. Although the system is mainly trained for
the Chinese language, the service is also offered in English
(however, with lower naturalness compared to the Chinese
voice). Baidu offers an interface through their speech synthesis
app through which it is possible to submit phrases and obtain
audio files. To automate the process, a script was created to
generate HTTP requests to the app and receive the resulting
MP3 file. As there is only one English voice available, 2645
utterances were extracted from this system.

B. Real Speech Collection

The FoR dataset also contains a large number of real
utterances, i.e. speech recordings from humans. The process
of collecting real utterances is a complex task since we
need to ensure that the collection method does not introduce
unintentional bias. For example, it is necessary to ensure that
the utterances are recorded using a variety of microphones,
otherwise the machine learning algorithm may learn to classify
based on features specific to one recording device, instead of
learning the real differences between a synthetic utterance and
a real utterance. For the same reason, it is important to have
a large variety of voices from all genders, as well as a good
variety of accents.

The first step was to identify potential sources of real
utterances. Two main source categories were identified: open
source datasets, which provide a large amount of pre-processed
speech; and internet recordings, such as speech extracted from
Youtube videos.

Open source speech datasets can be a great source of real
speech, since they provide a wide variety of clean recordings.
The following open source datasets were selected and incor-
porated into the FoR Dataset:

o Arctic Dataset'’: This dataset contains 1132 utterances
spoken by 7 professional voice actors, resulting in a total
of 7924 utterances. This dataset was chosen because it
contains a good variety of accents as well as having
utterances from all genders. Also, as we have the same ut-
terances being spoken by 7 different speakers, it increases
the chances of the classifier learning a more generalized
model for real/synthetic classification.

e LISpeech Dataset'!: The LJSpeech dataset contains
13,100 utterances from one female speaker. This dataset
is a well known real-speech dataset used in several TTS
publications, such as DeepVoice 3 [21], and for this
reason it was chosen for this research. Also, this dataset
was used to train the DeepVoice 3 model, meaning that
we have synthetic and real utterances from the same
voice, increasing the chances of a classifier learning a
more generalized model for real/synthetic classification.

o VoxForge Dataset'>: VoxForge is an open source real
speech dataset in which any person can record and submit

9https://cloud.baidu.com/product/speech/tts
10http://festvox.org/cmu_arctic/
https://keithito.com/LJ-Speech-Dataset/
Zhttp://www.voxforge.org

utterances to the project. This creates a dataset with
a large variety of voices, recording devices and even
audio quality. At the time of the collection, this dataset
contained more than 86,000 utterances, from more than
1,200 persons using a large variety of recording devices.
This dataset was chosen due to its large amount of
different voices as well as the large variety of recording
devices, which increases the chances of the classifier
learning a more generalized model.

Social media platforms, such as Youtube, can be an excel-
lent source for speech data: they provide a high variability
of voices as well as recording devices. However, audio from
such sources usually contains a large amount of background
noise and/or background music. To minimize the chances of
background noise and poor recording quality, we selected a
variety of educational videos as source of speech. Educational
videos (such as TED talks, online courses and tutorials) are
good candidates because they typically are recorded in a
silent environment (using a high quality recording device)
and typically contain only one speaker. For this research, 140
videos (speakers) were selected. From those videos, the full
audio was extracted and the SoX!? tool was utilized to segment
the audio where a silence of 2 seconds or more was detected.
The purpose of segmenting the audio based on silence is to
avoid broken utterances, where audio is cut while someone is
speaking. This process resulted in a total of 3720 utterances
from 140 speakers.

C. Dataset Versions

As we expect the FoR Dataset to be used in machine learn-
ing experiments, it is important to pre-process the utterances
in a way that eliminates bias. Based on the pre-processing
applied, we identified and generated four different versions
of the dataset: for-original, for-norm, for-2seconds and for-
rerecorded.

The original dataset, named for-original, contains the files
as collected from the speech sources, without any modification
or class/gender balancing. A total of 195,541 utterances are
present in this dataset version. The gender and class distri-
butions can be found in Figure 1. Although the data in this
dataset version is unbalanced in terms of gender and class
distribution, it is being published so the research community
can use the raw data with their own pre-processing techniques.

Gender/Class Distribution (for-original)
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Fig. 1. Gender Distribution - FoR Original

Bhttp://sox.sourceforge.net/



As the dataset is composed by utterances from several audio
sources, it is essential to normalize the data to eliminate bias.
The normalized dataset, named for-norm contains the same
files as the original dataset but with the audio converted to
WAV, normalized to OdBFS, downsampled to 16kHz sample
rate, converted to mono and with silences removed from the
beginning and end of the utterances.

The filetype conversion consists in ensuring that every file
in the dataset is in the same format. The original dataset
contains audio in two formats: WAV and MP3. Since WAV
is the preferred format for machine learning algorithms, all
audio files were converted to WAV using the ffmpeg'* tool.
To automate the conversion of all the files, a script was created
to convert the whole dataset keeping the same folder structure.

A possible concern for someone considering using the FoR
dataset could be that the format in which the speech was
originally recorded could impact on the classification results.
To alleviate this concern, we performed an experiment in
which we converted the whole dataset to MP3 and then
converted everything back to WAV. This process did not affect
our accuracy results, which suggests that MP3 compression
does not introduce bias.

Normalizing the volume in an audio dataset is a common
practice in machine learning research, since inconsistent vol-
ume levels can impact on learning and classification. As the
files were collected from several data sources, each one with
their own volume settings, it is important to normalize the
volume of all utterances to eliminate the possibility of volume
becoming a distinguishing factor. Using the SoX tool, all the
audio files were normalized to OdBFS.

The sample rate is an important factor when training a
machine learning algorithm: all the input audio should be at
the same sample rate to ensure the audio is processed correctly.
The majority of the audio files collected had a sample rate of
16kHz, but there were also files recorded at 22kHz, 24kHz and
48kHz. Since the human voice frequency spectrum typically
ranges from 300Hz up to 5000Hz, using 16kHz as the common
sample rate provides enough room for the task, since it can
accurately represent audio signals up to 8000Hz. Using the
SoX tool in conjunction with a custom script, the whole dataset
was downsampled to 16kHz.

All the synthetic speech solutions generate audio in a single
channel (mono), while a good fraction of the real utterances
were recorded in two channels (stereo). To avoid this becoming
a distinguishing factor, all the audio files were converted to
mono using the SoX tool. This tool uses a channel mixing
technique, which combines two audio tracks into a mono track
by scaling each track by 0.5 and adding the signals to result
in a single track.

The SoX tool was also used to remove the silence in the
beginning and end of an audio file. To automate the process,
a script was created to automate the silence removal in the
whole dataset. First, we remove the silence from the beginning
of the file. Then, as SoX does not have a feature to remove

4https://www.ffmpeg.org/

the silence in the end of the file, we reverse the audio file, cut
the silence from the beginning, and reverse the audio again.
As a result of this processing step, all the files have no silence
in the beginning nor in the end of the audio.

Finally, and perhaps most importantly, we balanced the
data to achieve even distribution between genders and classes
(synthetic/real). The resulting distributions can be seen in
Figure 2, where it is possible to note a more even picture
in terms of class and gender. Due to the balancing process,
the for-norm version of our dataset contains a total of 69,400
utterances.

Gender/Class Distribution (for-norm)
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Fig. 2. Gender Distribution - FoR Normalized

Several audio classification methods require that all audio
inputs are of the same length. As the for-norm version of our
dataset contains full utterances, they are of varying length. In
fact, it turned out that the synthetic audio was considerably
shorter than the real audio. While the synthetic audio was on
average 2.35 seconds long (with a standard deviation of 0.83
sec), the real utterances were on average 5.05 seconds long
(with a standard deviation of 1.95 sec). Figure 3 shows the
audio length distribution for both real and synthetic audio.
This significant length difference may affect the classification
results since the model may learn to distinguish between real
and synthetic speech based on the length of the audio. To
address this issue, we created a new version of the dataset
as follows: we started by discarding all files shorter than 2
seconds. Then, we truncated the remaining files at the two-
second mark. The last step was to re-balance the dataset
to achieve even distribution across genders and classes. The
resulting version of the dataset, named for-2seconds, contains
a total of 17,870 utterances.
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Fig. 3. Audio Length Distribution

To simulate a real-world synthetic speech attack, we decided
to re-record the dataset. The idea is that in a real world



scenario, a malicious person may generate/play the synthetic
speech with one device (e.g. a computer) and record it us-
ing another device (e.g. a smartphone). This is an example
where the attacker is trying to impersonate someone via a
communication channel (e.g. a phone call or a voice message).
To simulate this scenario, we played the utterances from
the for-2seconds dataset using a regular computer speaker
and recorded them using a non-professional microphone,
simulating a casual attacker. The resulting version of the
dataset, referred to as for-rerecorded, contains re-recorded
utterances that simulate a real world attack. As the utterances
were recorded at 16kHz and the volume was constant during
recording, there was no need for downsampling or volume
normalization.

To get a better understanding of which frequencies were
most affected by the re-recording process, we used a chi-
square test to identify the frequencies that differ the most be-
tween original and re-recorded audio. The representation used
for this test was an 1024-bin STFT audio representation (due
to its frequency bin linearity). To help with the visualization
of the results, the frequency bins were ordered (from OHz to
8kHz) and a colour was attributed to each frequency bin: red
meaning high difference score, green meaning low difference
score.

The results of this analysis for synthetic speech can be seen
in Figure 4, in which it is possible to observe that higher
frequencies in synthetic speech were the most affected by the
re-recording process. When the same analysis was applied to
real speech, the results were as shown in Figure 5. Real speech
was also affected when it comes to its high frequencies, but
it is clear that the re-recording process has a larger effect on
synthetic speech. This validates our decision to re-record the
dataset, as it is quite possible that classification results may
be quite different in this case.

Synthetic Speech
0Hz 2kHz akHz 6kHz 8kHz
|

Fig. 4. Chi-Squared Frequency Change Map - Synthetic Speech

Real Speech
OHz 2kHz akHz 6kHz 8kHz

Fig. 5. Chi-Squared Frequency Change Map - Real Speech

D. Dataset Division

The original dataset (for-original) is organized in folders
according to their source. All the preprocessed versions of
the dataset (for-norm, for-2seconds and for-rerecorded) were
divided into training, validation and testing, as is common
practice in machine-learning research. The division is as
follows:

o Training: Contains 77.73% of the dataset, utilized to train
the machine learning models. Gender and class balanced.

o Validation: Contains 15.58% of the dataset, utilized to
validate the accuracy of the machine learning models.
Gender and class balanced. The validation utterances are
unseen during the training phase.

o Generalization Testing: Contains 6.68% of the dataset.
Contains only synthetic voices from one unseen algorithm
(Google TTS Wavenet) and unseen real voices. Gender
and class balanced. It is utilized to test if the trained
model can generalize and detect unseen TTS algorithms
and unseen real voices.

With the dataset versions created, processed and divided,
they are ready to be used by the research community.

IV. EXPERIMENTS

To illustrate the usefulness of the various versions of the
FoR dataset, we present a series of experiments we conducted
with it.

A. Experiment 1: Synthetic Speech Detection

The first experiment corresponds to the main motivation for
the creation of this dataset: building a machine learning model
that discriminates between real and synthetic speech. We built
various traditional machine learning models, as well as several
deep learning models. More details about these experiments
can be found in [24].

The traditional machine learning models consists of extract-
ing an audio representation (STFT, Mel-Spectrograms, MFCC
and CQT) for each audio file, averaging the representation over
time to obtain a frequency activation vector, and inputing this
vector into Weka'> with the appropriate classes (synthetic/real)
to obtain accuracy results.

The deep learning models consist of extracting audio fea-
tures (STFT, Mel-Spectrograms, MFCC and CQT) from each
audio file and converting them to an image. The resulting im-
ages were then used to train selected pre-trained deep learning
architectures, such as VGG16/VGG19 [25] and Inception v3
[20]. Since the deep learning models utilize spectrograms, we
used the for-2second version of the dataset.

The traditional machine learning results indicate that the
MFCC audio representation with the Random Forests method
achieves up to 98.54% validation accuracy. This shows that it
is possible to achieve high accuracy for some tasks without us-
ing the temporal aspect of the input audio (input representation
was averaged over time). The results from the deep learning
analysis show that the VGG16 and VGG19 models using the
STFT audio representation presented the highest validation
accuracy (99.96% and 99.94% respectively). This is to be
expected as these models had access to temporal information
as well.

To evaluate the generalization ability of the above models,
we tested the performance of the trained models against a
totally unseen TTS algorithm (Google TTS Wavenet, which
was not included in the training/validation dataset). This ex-
periment simulates how the models would react if an attacker

Bhttps://www.cs.waikato.ac.nz/ml/weka/



creates a new TTS system. The traditional machine learning
models achieved up to 86.94% accuracy, while the deep
learning models achieved up to 92.00% accuracy.

To evaluate the efficiency of the aforementioned detection
approaches in a real-world scenario, where an attacker plays
a synthetic utterance through a voice channel, we repeated
the above experiments with the for-rerecorded version of the
dataset. When it comes to validation accuracy, the traditional
machine learning models achieved up to 95.05%, while using
deep learning it is possible to achieve 99.96%. This shows
that the re-recording process had little-to-no impact on the
performance of the deep learning methodologies.

However, when the models were applied to the unseen
rerecorded TTS algorithm, accuracy dropped to 85.78% for
the traditional machine learning models and 91.42% for deep
learning. This indicates that deep learning techniques are quite
resilient to the rerecording process even in the case of an
unseen TTS algorithm.

B. Experiment 2: Waveform Classification

As seen in the previous experiments, the synthetic speech
detection accuracy using spectrograms is quite high. This
raises the question of whether simpler audio representations,
such as waveform images, can be enough for the classification
of real and synthetic utterances.

For this experiment, we used the for-2seconds version of
the dataset, and converted it to waveforms using the ffmpeg
tool'®. The resulting images were then used to re-train the
VGG19 model.

Using just waveform images with the VGG19 model, we
achieved 89.79% validation accuracy. While this is signif-
icantly lower than the validation accuracy achieved with
spectrograms, it is still rather surprisingly high. It does raise
the question of whether the dataset contains volume bias. Even
though all audio files are normalized to OdBFS, it is definitely
possible that the average loudness of synthetic speech is
significantly different than that of real speech.

To ensure that the dataset does not contain volume bias, we
employed the use of dynamic range compression (using the
SoX tool) to reduce the dynamic range of every audio file in
the dataset. All files were again normalized to OdBFS to ensure
that their respective loudness is similar. The compressed
dataset was transformed into waveform images as before and
were used to re-train the VGG19 model. This model achieved
a validation accuracy of 89.15%, which is only slightly lower
than the original waveform performance (89.79%). This result
shows that volume discrepancies have little-to-no effect on the
classification process, which suggests that the dataset does not
contain volume bias.

C. Experiment 3: Signal/Noise Ratio Analysis

An important factor widely analyzed by previous research
in synthetic speech detection is the relation between noise and
accuracy. The idea is to investigate how noise impacts on the

16https://www.ffmpeg.org/

accuracy of the model by adding a variety of levels of pink
noise to the utterances and observing the model performance.

For this experiment, we use the for-2seconds version of the
dataset. Then, using the SoX tool, we apply pink noise in a
variety of volume levels, from 2% to 50% of the resulting
audio. This results in six sub-datasets, each one related to a
particular level of noise. We then use each of the six sub-
datasets to train an independent VGG19 model (with STFT
audio representation).

Figure 6 presents our results. As expected, the higher the
noise level, the lower the accuracy. It is also possible to note
that the accuracy of the model remains high when the noise
volume is up to 35%, showing that the architecture is fairly
robust against noise. With a noise volume higher than 40% the
accuracy starts to drastically decrease. When the noise level is
equal or higher than 45%, the VGG19 is not able to distinguish
between synthetic or real speech. It is important to note that
45% noise ratio results in an utterance of quite poor quality,
making it hard to even distinguish what is being said.

Noise/Accuracy Ratio (VGG19)

100%

90%
80%
70%
60%
50%

Accuracy

40%
30%
20%
10%
0%
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Noise Level

Fig. 6. Noise ratio and accuracy chart

D. Experiment 4: Timbre Model Analysis

Our last experiment does not involve the generation of
images, so we use the for-norm version of the dataset. The
purpose of the experiment is to investigate whether timbre
models, such as brightness and roughness, can be used to dis-
criminate between synthetic and real speech. For this reason,
we extracted measurements for four main timbre models based
on the AudioCommons standards [26]:

o Brightness: A bright sound is one that is clear/vibrant
and/or contains significant high-pitched elements.

o Hardness: A hard sound is one that conveys the sense of
having been made by something solid, firm or rigid; or
with a great deal of force.

o Depth: A deep sound is one that conveys the sense of
having been made far down below the surface of its
source.

« Roughness: A rough sound is one that has an uneven or
irregular sonic texture.

Values for these timbre models were obtained for each audio
file using the Audio Commons!’ tool, which is able to generate

Thttps://www.audiocommons.org/2018/07/15/audio-commons-audio-
extractor.html



scores for each of the above mentioned features and much
more. The data was then input into Weka for analysis. We
evaluated how well would a classifier perform if only those
four features were provided. Table II shows the results of
this experiment. Using Random Forests we achieved 79.38%
validation accuracy, and using SVM 73.46% testing accuracy.
These numbers show that although timbre models are not
sufficient classification attributes, they are statistically different
in real utterances as opposed to synthetic utterances. Further
research needs to be conducted to see how this information
can be utilized.

TABLE I
TIMBRE MODEL ANALYSIS: RESULTS

Algorithm [ Validation Acc. | Testing Acc.
Naive Bayes 69.71% 67.27%
SVM 69.91% 73.46%
Decision Tree (J48) 76.78% 70.26%
Random Forests 79.38% 71.47%

V. CONCLUSION

As speech synthesis improves, the need for an up-to-date
synthetic speech dataset that can be used in the synthetic
speech detection research also increases. In this paper, we
introduce the FoR Dataset, which contains more than 198,000
utterances including the latest TTS algorithms and a large
variety of real speech.

The dataset is published in four versions:

1) for-original: containing the utterances as collected from
various sources

2) for-norm: containing the utterances after a set of prepro-
cessing steps

3) for-2seconds: containing the utterances truncated at 2
seconds

4) for-rerecorded: containing all the utterances rerecorded
using a speaker and a microphone

We hope that all four versions of the FoR dataset will
provide to the community a solid source of data for synthetic
speech detection experiments. This paper presented several
such experiments that showcased the usefulness and versatility
of the introduced dataset.

A. Research Contribution

With the dataset created and published, we hope that the
research community can use it to improve the state of the art
in two main areas. The first one is synthetic speech detection,
which is a rising concern since TTS systems are achieving
human naturalness and can be used for impersonation. As seen
in our experiments, it is possible to use our dataset to train
deep-learning-based classifiers and achieve high accuracy in
this task. The second main area is speech synthesis, since our
dataset can be used to improve the quality of neural-network-
based text-to-speech systems by using adversarial networks.

B. Future Work

Although the dataset is already a good source of data for
synthetic speech detection systems, it can be improved to
provide a higher variety of data points.

In regards to synthetic speech, one could improve the dataset
by including extra TTS algorithms and/or utterances from
voice-conversion systems. Also, although our dataset includes
the latest TTS systems, new speech synthesizers are constantly
released and could be included in future versions of the dataset.

In regards to our rerecording process, our utterance rere-
cording was performed using only one type of speaker and
one type of microphone. An interesting experiment would
be to use a large variety of recording/playing devices in a
large variety of recording rooms. This would create a more
heterogeneous rerecorded dataset and would create a more
generalized synthetic speech detection model.
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