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ABSTRACT

Machine learning has been applied in a vast array of applications in
the recent years, including several qualitative problems in the arts.
However, in the world of music production, including mixing and
mastering, most tasks are still performed by music professionals
with decades of experience. Aspiring mastering engineers typically
have to apprentice with professionals to learn their craft. Access to
professionals is a scarce resource though, as they are typically very
busy.

In this paper, we present a method to evaluate the mastering
quality of a piece of music automatically. We delegate the task
of determining what we deem to be a subjectively well mastered
song to professional mastering engineers. Using professionally mas-
tered music, we derive datasets with varying degrees of deviation
from the original music and train models to recognize the changes
that have been made. This allows us to provide novice mastering
engineers with an automatic rating of their work based on the
magnitude of the deviation from the gold standard. We present
experiments that demonstrate the accuracy of our approach, as
well as a user study that shows how the results of our approach
correlate to assessments made by human evaluators.
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1 INTRODUCTION

In music production, the mastering of audio is the final step in the
development of a song or piece of music which serves to make the
audio sound as professional as possible. It is the mastering engineer
who must tastefully edit a single sound file which may consist of
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many instruments, or very few instruments, or even just a voice
depending on the music genre and song.

One of the main tools used by the mastering engineer is an
equalizer. An equalizer changes an audio file by amplifying or re-
ducing the volume of certain frequencies. A car typically has an
equalizer that lets you change the amount of “bass” and “treble”,
which typically corresponds to affecting two large bands of fre-
quencies centered at 250Hz and 4000Hz respectively. A mastering
engineer performs similar equalization operations but has the abil-
ity, through the use of various parameters, to modify the center
frequency, the width of the band around the center frequency, as
well as the amount of amplification or reduction.

A mastering engineer’s goal is two-fold when equalizing a song.
First, she needs to ensure that all frequencies in the human hearing
range (20Hz to 20kHz) are clearly audible, especially frequencies
that correspond to the instrumentation in the music. For this pur-
pose, she may accentuate frequencies that will bring out certain
qualities, such as the attack of a snare drum. Second, she needs to
ensure that the music can be enjoyed in a variety of sound systems
and listening environments. For example, the noise of a car on the
highway masks certain frequencies that may need to be amplified a
bit. These two goals are often at odds with each other. Professional
mastering engineers go through rigorous ear training and rely on
years of experience to achieve the perfect balance for their final
product.

The goal of the work presented in this paper is to develop ap-
proaches that can help aspiring mastering engineers learn from the
craft of professional mastering engineers. For this purpose, we con-
sider officially released music as the gold standard. We then apply
different sets of equalization operations on the gold standard that
we can use as input to machine learning algorithms to train models
that can recognize the equalization operations that are needed to
transform one piece of music to another. This way a mastering en-
gineer in training can receive feedback on how many equalization
operations separates their work from that of a professional.

This work was inspired by a similar approach in the image pro-
cessing domain [5]. In that work, the authors start with profession-
ally prepared photographs, apply various modifications to them,
and train a model that can recognize these modifications. When
these modifications are used to process new photographs, the re-
sults can in some cases be confused with professional work.

In our case, the goals of our work are two-fold:

(1) Develop a machine learning approach that can successfully
recognize the equalization operations that it would take to
transform one piece of audio to another.

(2) Develop a training tool for mastering engineers that can
rate their work against a gold standard, as well as suggest
equalization operations to improve it.
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The structure of the remainder of this paper is as follows: Section
2 presents the necessary background on mastering, equalization,
as well as the data representations of audio we used in our work.
Section 3 describes a pilot study that informed the rest of our work.
Our methodology is presented in Section 4. Section 5 presents the
results of our experiments. A user study we conducted to establish
the usefulness of our work is presented in Section 6. Related work
is presented in Section 7. Finally, Section 8 concludes the paper and
presents opportunities for further research.

2 BACKGROUND

Mastering is the last step in the process of preparing a song for pub-
lic release[11]. This process starts with recording all instruments
and vocals separately in individual audio files. These files are then
typically edited to correct any errors, e.g. autotuning vocals. Next,
all individual audio files are combined together to create one audio
file during a process called mixing. Put simply, in this step the tracks
are processed and their volume is adjusted so the tracks all sound
like one cohesive song when put together. The mixed song is then
sent to a mastering engineer.

During the mastering process, the audio can be equalized, its
dynamic range compressed, and its volume adjusted for it to sound
consistent across different sound systems as well as to artistically
make the song sound more pleasing. Other processing, such as
adding reverberation, may be performed for artistic reasons. The
end result of the mastering process is referred to as the master of
the song.

In this paper, we focus on the equalization part of the mastering
process, as it is a technical rather than an artistic matter, and it is
usually the hardest one to get right for aspiring mastering engi-
neers. For this purpose, we introduce the concept of an equalization
operation, defined in detail below.

Equalizing an electronic signal refers to balancing different fre-
quency ranges in the signal. This can mean increasing or decreasing
the energy of the signal in a certain frequency band. Musically,
when speaking about equalizing a song the terms boosting and
cutting volume are used instead of increasing or decreasing energy,
respectively. Finding a good balance when equalizing involves find-
ing the right amount of volume for each frequency band, so that the
song can be perceived in a pleasing fashion in a variety of sound
systems, e.g. both in high end stereo systems as well as on laptop
speakers, as well as in a variety of environments, e.g. in a quiet
room as well as in a car on the highway.

An equalization operation has three distinct parameters:

(1) Frequency. This is the center frequency that will be boosted
or cut. Frequencies close to the center frequency will also be
affected to a lesser degree as described below.

(2) Gain. The amount of boosting or cutting for the center fre-
quency, measured in decibels, positive for boosting, negative
for cutting.

(3) Width. This parameter designates the range of frequencies
that will be affected by the equalization operation. In music
production, this parameter is usually referred to as Q. Small
values of Q correspond to wider equalization operations and
vice-versa. In this paper, we measure width in the number
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Figure 1: Equalization curve showing a 12dB boost at 33Hz
with a half octave width, a 12dB cut at 300Hz with width of
one octave, and a 12dB boost at 4.2kHz with a width of two
octaves

of octaves! that span the frequencies that are affected by the
equalization operation.

Figure 1 shows a combination of three equalization operations
with different center frequencies and different widths. As can be
seen in Figure 1, the range of frequencies affected by an equalization
operation follows a Gaussian distribution, i.e. the further away from
the center frequency, the smaller the amount of boosting or cutting.

Boosting equalizations by definition increase the volume of a
particular set of frequencies. That means that the clip overall be-
comes a little bit louder. When performing multiple equalizations
on the same clip, this increase in volume can be significant, to the
point where clipping occurs. To avoid this, all clips in our datasets
were normalized to -12dBFS prior to applying any equalization on
them. This ensured that none of the equalized clips were distorted
due to clipping.

In the case of music mastering, it is rare to come across extreme
equalization operations, such as ones using narrow widths or large
amounts of gain, as such operations would affect the sound quite
dramatically. Mastering engineers typically perform wide equaliza-
tions with a gain that is never more than 6dB. It is also unlikely
that they would apply multiple equalizations whose center frequen-
cies would be very close to each other, typically they would be
at least an octave apart. We refer to equalization operations that
conform to the description in this paragraph as mastering-relevant
equalizations.

To achieve the goals outlined in the introduction, it is necessary
to be able to determine what is the difference between two different
masters of the same song, e.g. a master produced by a music pro-
fessional and one produced by a novice mastering engineer. This
way, the novice could study the equalization operations that would
allow them to transform their master into the one produced by a
professional.

!While a musical term, octave has a distinct meaning in the frequency domain. An
octave is the distance between a frequency f and frequency 2f. As a result, a linear
increase in octaves is an exponential increase in frequency. For this reason, all graphs
in this paper express frequency using a logarithmic scale.
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Figure 2: A waveform of a birdsong showing 5 bird calls [2]
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To compute this difference, we need to carefully consider the data
representation we will use for the audio signals in our work. Digital
audio signals are stored using the pulse-code modulation (PCM)
method (.wav files contain PCM data). While this format is great
for storage and reproduction, it only stores the amplitude of the
signal at every sampling point. As a result, its visual representation,
called a waveform (see Figure 2), only provides information about
the loudness of the signal at any given time.

However, subtracting the two waveforms would produce very
poor results for our purposes. The reason for this is because the var-
ious processing steps applied during the mastering process modify
the phase of the signal in a complicated manner (different frequen-
cies are shifted by various amounts of phase). This is in part because
digital equalizers attempt to replicate the process that analog equal-
izers use to boost or cut frequencies which involves shifting phase.
While humans cannot perceive such phase shifts, things are dif-
ferent at the signal level. Therefore, if one simply subtracted two
different masters, the result would not be just the audio that cor-
responds to the various cuts and boosts, but it would also include
noise due to phase interference.

As a result, it is apparent that we need to represent our audio
signals in the frequency domain. For this purpose, we experimented
with two different data representations: spectrograms, and the aver-
age Short-Time Fourier Transform (STFT) of each signal. We discuss
both below.

A spectrogram of an audio signal is a two dimensional plot with
the y axis corresponding to frequency and the x axis to time. For
time intervals of a specified length, the Fourier transform of the
audio signal at that time is calculated and plotted on the graph.
Brighter values correspond to louder volume for that frequency for
that portion of the signal.

Figure 3: A spectrogram of a birdsong showing the distinct
harmonic spectra of different bird calls [2]

Figure 3 presents the spectrogram for the birdsong whose wave-
form was shown in Figure 2. It also showcases the fact that real
world signals have multiple frequencies present at any given time.
In fact, even if a single note is played on a piano, the resulting
signal will contain several frequencies, typically multiples of the
lowest present frequency, called the fundamental frequency. The
distribution and magnitudes of these frequencies is what gives each
instrument its distinct sound, its timbre.

Spectrograms, such as the one in Figure 3, may choose to depict
phase information through the use of colour. As phase can actu-
ally be problematic for our work, as described above, we remove
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it, which is why the remaining spectrograms in the paper are in
grayscale.

To subtract spectrograms, we simply compute the absolute value
of the difference in pixel intensity between corresponding pixels in
the spectrograms of two different masters. We refer to the resulting
spectrogram as a difference spectrogram.

Figure 4: Three examples of pink noise difference spectro-
grams. The top one has had a boost at 261Hz, the middle
one has had two boosts at 261Hz and 1046Hz, and the bot-
tom one has had three boosts at 261Hz, 1046Hz, and 4186Hz.
All boosts had a gain of 6dB and a width of 2 octaves. All fre-
quencies correspond to C notes two octaves apart from each
other

Figure 4 presents three difference spectrograms of equalized pink
noise (pink noise contains the same amount of energy in each octave
so it is usually more appropriate for musical applications than white
noise which contains the same amount of energy per frequency).
It is easy to see that each equalization operation produces a black
band around its center frequency. This indicates that this data
representation can be used to determine the number of equalization
operations that separate two masters of the same song. We present
experiments to that effect in Section 3.

The second data representation we use in this paper is that of the
average STFT of each audio signal. The STFT of an audio signal gives
us the amplitude for each frequency at a resolution of every few
milliseconds depending on the parameters used. Since equalization
operations are applied consistently throughout the duration of
a master, we average these amplitudes across the duration of the
audio signal and obtain a vector with the average amplitude for each
frequency. This approach can still give a clear image of the amount
of energy for each frequency, so it is well suited for recognizing
frequency-based operations, such as equalization. To compute the
difference between two average STFT vectors, we simply compute
the absolute value of the difference between the two vectors.

We utilize the average STFT representation in Section 4 to suc-
cessfully recognize the number and parameters of equalization
operations that can be performed to transform a given master of a
song to a different master.

3 PILOT STUDY

Our first attempt at addressing the problem of identifying the equal-
ization operations that separate two versions of a clip made use
of the difference spectrograms presented in the previous section.
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Figure 5: Three difference spectrograms from our pilot experiment (explained in the text)

We utilized a transfer learning approach that has shown promising
results for audio classification tasks in our previous research [16].

Transfer learning is typically used when the number of available
labeled data is not sufficient to effectively train a neural network
for a particular classification task. In that case, it is still possible to
use a network that has been trained for a task in a related domain.
In our case, we utilized Inception v3 [9], an image classifier that has
been trained with real world images from the ImageNet dataset [17].
We fixed the weights of all its layers except for the last one, and
re-trained the last layer using difference spectrograms as the input
vector [19]. The output classes reflected the number of equalization
operations that corresponded to each spectrogram.

In particular, as shown in Figure 6, both the original and the
equalized audio clips were converted into spectrograms using the
asperes tool [1]. The resulting spectrograms from the datasets were
then subtracted from their corresponding original spectrograms to
generate difference spectrograms that become the input for Incep-
tion v3.

Original @ Original
Dataset Spectrograms
AT N
EQ Difference /Inception |
=" Spectrograms v
Equalized enores Equalized
Dataset Spectrograms

Figure 6: Pilot study data flow

For our pilot study, we used the following parameters for our
equalization operations: the frequencies of the different equalization
operations were at least one octave apart, while the width of each
equalization operation is one quarter of an octave. As a result, there
is no frequency overlap between any of the equalization operations.
An approach that cannot classify successfully this set of difference
spectrograms would have a much harder time with spectrograms
that contain overlapping equalization operations.

We run the classifier for 4000 iterations (further iterations did
not show meaningful improvement) with a learning rate of 0.01.
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The training batch size was 100 clips, and the test set was 10% of
the images.

Despite the fact that our pilot experiment used non-overlapping
equalization operations, we were able to achieve only an accuracy of
41.2%. In other words, only for 41.2% of the difference spectrograms
was the classifier able to place them in the correct class with regard
to the number of equalization operations performed.

Figure 5 presents sample difference spectrograms that illustrate
some of the issues the classifier may have had (the actual images
provided to the classifier are many times larger than shown here).

The top difference spectrogram corresponds to a single equal-
ization operation at 4.2kHz. A black band is indeed visible at that
frequency (the band is not continuous as in the case of the pink
noise spectrograms in Figure 4 since in a song a particular frequency
is not always present). This spectrogram happened to be classified
correctly.

However, the model had a much harder time with difference
spectrograms corresponding to multiple equalization operations.
The middle spectrogram in Figure 5 corresponded to three equal-
ization operations, and the bottom one to four. They were both
misclassified. While it is possible to see black bands in both of these
spectrograms, their number is not obvious to a human evaluator,
and it appears that Inception v3 had similar problems as well.

These experiments indicated that, while it appears possible to
detect the number of equalization operations on a pink noise differ-
ence spectrogram, the situation is quite different when it comes to
music. Music does not have a uniform distribution of energy across
the frequency spectrum (thankfully), so the patterns corresponding
to equalization operations are not easy to pick up by either humans
or machines.

4 METHODOLOGY

The fact that an otherwise successful classifier like Inception was
unable to detect the number of equalization operations in difference
spectrograms indicated to us that a change in our approach was
necessary. We decided to instead detect the exact equalization oper-
ations directly. Determining their number, then, becomes a simple
post-processing step. In this section, we describe the methodology
we used for all our experiments.
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Figure 7: Data flow to produce a trained model that detects
sets of equalization operations

Assume that we start with a set O of m original masters (pro-
fessionally mastered songs). The first step of our methodology is
to produce n equalized versions for each professionally mastered
song O; in our dataset, where i € [1, m]. We refer to each such
equalized version as Ej(O;), where j € [1,n]. We select n sets of
equalization operations that are applied to the original masters.
Each set s; may be a singleton, e.g. one equalization operation with
a center frequency of 200Hz, a gain of -6dB, and a width of 1 octave,
or it may contain several equalization operations, e.g. 6 equalization
operations with center frequencies 100Hz apart, ranging from 300
Hz to 800Hz, all with a gain of 9dB, and a width of a quarter octave.
Each set s; of equalization operations corresponds to a class c; for
the output of our classifier.

In order to produce appropriate input vectors for our classifier,
we deployed the average STFT data representation described in
Section 2. We first compute A(O;) and A(Ej(O;)), where A repre-
sents the average STFT function, whose output is a vector of size
1024. Each element in A(O;) represents the average magnitude for
a particular frequency in the human hearing range. Next, we obtain
the difference D;; = |A(O;) — A(E;(O;))|. Vectors D;;j are the inputs
to our classifier.

The next step in our methodology is to employ a classifier that
can be used to train a model that recognizes equalization operations.
We found gradient boosting to work exceptionally well for our
purposes. Gradient boosting is a machine learning technique which
produces a prediction model in the form of an ensemble of weak
prediction models [20]. It is a boosting technique, which means that
it is based on sequentially improving weak predictors using gradient
descent to come to an accurate predictor. The weak predictors are
typically decision trees which are sequentially built using a greedy
method. Each new predictor is built in sequence by summing the
result of the previous predictor with some other learned parameter,
thus its basis on gradient descent. At each step of boosting, the
newly learned parameter learns of the distribution of the residuals
of the previous model [6].

Our methodology proceeds by training a model M that attempts
to classify each input vector D;; into the correct class c; = M(D;j).
Figure 7 shows the process described so far in graphical form.

After training, the model is saved, and can be used to classify any
difference vector d; = |A(0) — A(E;(0))|, where o is a professionally
mastered song that was not part of our original set O (see Figure
8). If the classifier assigns vector d; in class cj, then it has correctly
identified the exact set of equalization operations that transformed
o into E;(o).
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Figure 8: Data flow to determine the set and number of
equalization operations in the testing phase

If the goal is to identify the number of equalization operations
that transformed o into E;(o0) rather than the exact operations, then a
simple post-processing step produces output equal to the cardinality
of set s; that corresponds to class c; (see Figure 8).

In summary, our methodology ensures that the two goals of this
paper set out in the introduction are met:

(1) It produces a trained model that can identify the sets of
equalization operations that have been used to transform a
piece of audio into another (set s; that corresponds to output
class cj)

It can be used as a training tool for mastering engineers.
Consider the difference vector d = |A(p) — A(t)|, where p
is the professional master of a song, and ¢t is the master
provided by a trainee. If d is the input to our model, the
output of the post-processing step can be used as a rating of
the quality of ¢ (the larger the output, the poorer the quality).

A couple of threats to the validity of our approach must be
mentioned:

(1) The same equalization operation will have a different effect
depending on the key of the song being equalized. For ex-
ample, a song in C major is likely to contain many C notes.
If the equalization operation is centered at the fundamental
frequency of a C note, it will have a much larger effect than
if it is centered on a note not in the C major scale.

While we believe this is an important issue worthy of further
study, it does not alter the results presented later in this
paper as the songs in our datasets were of unknown key,
and equally as likely to match the equalization operations
selected as not.

We applied the same equalization operation across the du-
ration of each clip. In practice, a mastering engineer may
apply different equalization operations for different parts of
a song, e.g. apply more dramatic equalization for the chorus
as opposed to the verse.

While the above is true, the validity of our approach remains.
In a practical setting, it is still possible to apply our approach
only to parts of a song by isolating the relevant part, or
duplicating a part that is shorter than the duration our model
is trained with.

In the next section. we present experiments that apply the above
methodology using different sets of equalization operations to as-
sess the accuracy of our approach.
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5 EXPERIMENT RESULTS

5.1 Classifier implementation

An important step that has to be completed before we can run
experiments is to choose an appropriate implementation of gradi-
ent boosting. We chose the catboost implementation of gradient
boosting [22]. Catboost uses binary decision trees, where the depth
at which the trees will terminate can be specified in order to avoid
overfitting. It also addresses the problem of prediction shift (where
the new learner to be added at each step to the previous predictor
causes a shift with respect to the previously learned set of residuals)
by creating a model with unshifted residuals using an approach
called ordered boosting [14]. Catboost has been used by many win-
ning entries in Kaggle competitions in the last few years [8].

For each one of our experiments, the catboost algorithm was
run for 1000 iterations. We chose a tree depth of 5, and the loss
function used was MultiClass [23]. The STFTs were obtained using
the librosa library [18]. The STFT window size used was a standard
size of 2048 samples with a hop of 512 samples, producing overlap
as to not lose information.

5.2 Initial experiments

To begin with, we performed several experiments to determine the
importance of various factors in constructing our datasets.

The first factor we considered was the length of the audio clips
used in our approach. We conducted several pilot experiments that
clearly demonstrated that having more than 30 seconds of audio
has no effect on the accuracy of our results. As a result, all clips in
all our experiments are 30 seconds long. This length of the audio
was chosen both for efficiency reasons (it is much faster to process
30 seconds of audio as opposed to a full song), as well as consistency
reasons (the original songs we used all have different lengths). To
ensure meaningful content, we omitted the first 30 seconds of each
song (to avoid initial silence or fade-ins) and used the next 30
seconds for our experiments.

The next factor we experimented with is the genre of the music
in our audio clips. The experiments presented later in this section
are based on a song corpus of approx. 800 songs in the rock genre.
We performed experiments using song corpora using other genres,
such as classical music, heavy metal and a mix of all three genres.
These experiments yielded insignificant differences in the results,
so the rest of this section focuses on the results we obtained for the
rock song corpus?.

Finally, we conducted experiments relating to the parameters of
the equalization operations. We found that once the value for gain
becomes larger than 6dB, accuracy does not improve no matter how
high the gain. Whether the gain was positive or negative was also
not a factor, so we fixed the gain value for all our experiments at
+6dB. We experimented with smaller gains (3dB) that proved hard
for our models to detect. In Section 6, we show that even music
professionals have a hard time identifying equalization operations
with a gain of 3dB.

2The music in the aforementioned corpora is copyrighted, so they are unfortunately
not publically available
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5.3 Dataset creation

We created 9 equalized datasets whose goal was to model possible
equalization moves that a mastering engineer would have to make
to master a song. To test to what precision the equalizations could
be detected by a model, the datasets varied in the widths of the
equalization operations performed, as well as the intervals between
frequencies (in the case of multiple simultaneous equalization op-
erations).

We used three different widths (three different Q values) to create
our datasets: two octaves, one octave, and half an octave (Q values
of 0.7, 1.4, and 2.8, respectively).

We also used three different minimum intervals between the
frequencies of simultaneous equalization operations. Due to the bell
curve nature of equalization, mastering engineers do not perform
equalizations whose center frequencies are very close. As a result,
we chose minimum intervals of 1 octave, half an octave (a music
interval of an augmented fourth), and one fourth of an octave (a
music interval of a minor third). We chose the exact frequencies
so that the notes at the center of the equalization operations were
respectively: all C notes in the human hearing range, all C and F#
notes, and C, D#, F#, and A notes.

A mastering engineer does not perform more than a few equal-
ization operations for a given song. As a result, we performed up to
7 equalization operations per clip, the center frequencies of which
were randomly chosen from the set of notes described above. This
set of equalizations corresponds to the target label for each clip.

For each equalized dataset we created, we combined one of the
width values with one of the minimum frequency intervals, result-
ing in 9 datasets. Each dataset was named based on these values,
e.g. dataset F1/2W2 contains equalized versions of the original rock
clips, where the minimum interval between the frequencies of si-
multaneous equalization operations is half an octave, and the width
of every equalization operation is two octaves.

The reason behind the different datasets is to stress the lim-
its of our approach. More specifically, some of the datasets will
have much more easily discernible equalizations than others where
equalizations might overlap. If the width used is very wide, and the
frequency interval is small, the widths will overlap when multiple
equalizations are applied. This should make the accurate detection
of the exact equalization operations much harder.

5.4 Accuracy results

Table 1 presents the accuracy values we obtained for our 9 datasets.
Correct recognition for each clip meant that our approach correctly
identified both the number of equalization operations as well as
the center frequency for each equalization operation.

Frequency Interval

1 1/2 1/4
Width | 1/2 | 96.4% | 97.6% | 97.9%
1 93.9% | 93.6% | 89.7%
2 | 88.7% | 85.8% | 77.4%

Table 1: Accuracy results for equalization recognition



Evaluating Music Mastering Quality Using Machine Learning

As can be seen from the results, accuracy is very high when the
equalization operations do not overlap with each other as is the
case in the top left part of the table. As overlap starts to become
a factor, our accuracy slightly decreases. The only comparatively
poor result is when the equalization operations may be as close
as 1/4 of an octave while their width is two octaves. Considering
the significant amount of overlap (something unrealistic for music
mastering), our accuracy result of 77.4% is quite impressive.

Overall, our approach is clearly successful in recognizing com-
plex equalization operations, a result that can have significant im-
pact in many music-related applications (see the future work dis-
cussion in Section 8).

In the case of music mastering, the more realistic conditions
under which mastering engineers would have to perform these
equalizations would be with frequency intervals of an octave or
half of an octave. A quarter of an octave would be too surgical of
an operation to be considered appropriate for mastering purposes,
especially with wider bandwidths. Similarly, a width of half an
octave would be much too small to be appropriate for mastering.
Mastering usually involves frequency cuts and boosts across wider
bands. Accuracy results for these mastering-relevant equalizations
from Table 1 are shown in the second column of Table 2.

Before Postprocessing  After Postprocessing

F1W1 93.9% 95.6%
F1w2 88.7% 90.5%
F12W1 93.6% 93.6%
F12W2 85.8% 85.8%

Table 2: Accuracy results relevant to mastering

One of the goals of this paper is to develop an automatic way
to rate a master produced by a trainee against a professional mas-
ter. As a result, we need to determine the number of equalization
operations needed to transform one master to the other. For this
purpose, we post-process our equalization recognition results so
that the result is accurate if the number of equalization operations
detected is correct regardless of whether the center frequencies
of these operations were correct. After this postprocessing, our
accuracy values for the mastering relevant datasets are shown in
the third column of Table 2.

The increase in accuracy after postprocessing is minimal (approx.
3%) from which we can conclude that the error in the data comes
from something other than the model misclassifying songs with
the same number of equalization operations. This could suggest
that the model performs well at identifying specific frequencies
and when an error occurs it detects a non existent equalization or
fails to detect an equalization.

The final set of experiments tested if our models that were trained
using rock songs can be used to classify songs in other genres. The
songs we used for the user study presented in the next section were
of various genres, including electronic and acoustic music. We run
these songs through our models using the process shown in Figure
8 and obtained accuracy values. Table 3 shows the results of these
experiments. By comparing the numbers in Table 3 to those in Table
1, one can see that accuracy has dropped by a small margin. This
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Frequency Interval

1 1/2 1/4
Width | 1/2 | 93.04% | 95.45% | 95.68%
1 87.83% | 88.18% | 84.86%
2 | 82.60% | 76.36% | 68.65%

Table 3: Accuracy results on user study songs

indicates that a large amount of transfer learning happens between
genres, but training a model with the same genre as the songs it
will be tested with is necessary for the highest accuracy.

Overall, the results presented in this section indicate that our
approach can not only provide a measure of how close to the gold
standard is a candidate master, but also provide accurate suggestions
as to which equalization moves should be applied to a piece of music
in order to get it mastered properly. We validate this conclusion in
the next section through the means of a user study.

6 USER STUDY

To assess how the performance of our models compares with human
performance, we conducted a user study with 15 participants of
various levels of experience with mastering. The goal of the user
study was to determine whether the trained models we obtain with
our methodology can identify equalization operations better or
worse than humans at different levels of experience. The questions
in the user study were of varying levels of difficulty in order to
better assess the performance of the various participants and our
models.

The participants were asked to listen to differently equalized ver-
sions of six different songs. Each song came with a set of questions
testing the participants to see if they could recognize what equal-
ization operations were performed on the songs. Some questions
involved comparing a mastered song to an equalized version of the
same song. Other tasks did not provide the participants with the
knowledge of which clip was the original master, and asked them
to rate a list of different versions of the song. The complete user
study questionnaire is available online [3].

The equalization operations done to the user study songs were
only in the treble or bass frequency bands which correspond to
high and low frequencies respectively, as identification of precise
frequencies requires significant expertise that even music profes-
sionals may lack. The width of the equalization operations used
was two octaves, so as to ensure that the changes could be heard
by the participants. Our trained model that corresponds the closest
to these parameters is FIW2, so in the following we compare the
results of our participants to those obtained by F1IW2.

Table 4 presents the results we obtained from our model as well
as the study participants. Correct answers are shown in green,
while partially correct answers are shown in yellow (we considered
a participant response that treble has been decreased as partially
correct when bass had instead increased, as the volume at which the
participant listened to each clip may have been a factor). Question
2 asked the participants to choose from among 5 clips the one
that sounded more like a professional master. Question 4 asked
the participants to rank three different versions of a clip that had
progressively more equalizations applied to them. Questions 5 and
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Question 1 2 3 4 5 6
1: A
Correct Answer Bass has been increased | B | Increase Treble 2:C Increase Bass Decrease Bass
3:B
L 1: A Increase Bass Increase Bass
Model Answer Bass/Mids increased B | Increase Treble 2:B/C | Increase Treble | Increase Treble
User # | Experience (Years)
1: A
User 1 0-1 Treble has been decreased | B | Increase Treble | 2: C Nothing Nothing
3:B
1: C
User 2 0-1 Bass has been increased | A | Increase Treble | 2: A Nothing Decrease Bass
3:B
1:B
User 3 0-1 Bass has been increased | D | Increase Treble | 2: A Nothing Increase Treble
3:C
1: A
User 4 0-1 Nothing has been changed | A | Increase Treble | 2:C Nothing Decrease Treble
3:B
1:B
User 5 0-1 Treble has been decreased | A | Increase Bass 2:C Nothing Decrease Treble
3:A
1: A
User 6 0-1 Treble has been decreased | C | Increase Treble | 2:C Nothing Decrease Treble
3:B
Decrease Treble 1B Decrease Treble
User 7 0-1 Treble has been increased | D 2: A | Increase Treble
Increase Bass 5. C Decrease Bass
1: A
User 8 0-1 Nothing has been changed | A Decrease Treble 2:B Nothing Decrease Treble
Decrease Bass
3:C
1: C
User 9 1-4 Nothing has been changed | B | Increase Treble | 2: A Nothing Decrease Treble
3:B
LA Decrease Bass Increase Bass
User 10 1-4 Bass has been increased | A Nothing 2:C . .
3B Nothing Nothing
1: A
User 11 1-4 Bass has been increased | B | Decrease Treble | 2:C | Increase Treble Nothing
3:B
Increase Treble Lc
User 12 1-4 Treble has been decreased | A 2: A | Decrease Treble | Decrease Bass
Increase Bass
3:B
1: A
User 13 4-8 Bass has been increased | B | Increase Treble | 2:C Nothing Decrease Bass
3:B
1: A
User 14 4-8 Bass has been increased | C | Increase Treble | 2: C Nothing Increase Bass
3:B
1:B
User 15 8+ Bass has been increased | B | Increase Treble | 2: C Nothing Nothing
3:A

Table 4: User study results (explained in the text). Best viewed in colour
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6 used equalization operations with a gain value of 3dB to test if
humans can detect such operations (our models performed quite
poorly on them).

Out of all 15 participants, 8 had 0-1 years of experience, 4 had 1-4
years, 2 had 4-8 years and one had more than 8 years. This provided
us with enough variability in experience to see how skill affected
performance on each of the tasks. One of the main conclusions we
arrived at from having many users with minimal previous experi-
ence in mastering or mixing was that even very simple questions
proved to be very difficult for these users. Given this, it is safe to
say that for future user studies and experiments the participants
should have a decent amount of experience in mastering to gain
any valuable insight into human performance in these tasks. At the
same time, this indicates that approaches such as the one presented
in this paper can be immediately helpful to anyone interested in
mastering, or ear training in general for that matter.

Based on the answers of the first four questions, it is fair to say
that our model performs usually better than participants with 0-1
or 1-4 years of experience. This would indicate that it can be used
for training purposes with novice mastering engineers. There were
only 3 participants with more than 4 years of experience, but they
all performed better than our model. Further study will need to
be conducted to determine how we could improve our model’s
performance to the level of a music professional.

For the questions related to equalization operations with a gain
of 3dB the participants seemed to not be able to recognize the
differences regardless of skill level. Even the one participant with
8+ years of experience did not get the correct answer for either
question. From this we can conclude that such low gain equalization
operations are hard to detect even by music professionals, which
would mean that they are not as critical for our model to detect as
well.

In conclusion, the user study indicated that our model performs
better than beginner mastering engineers but not as well as experi-
enced ones, which is appropriate for our purposes, as our goal is
not to replace music professionals, but to provide automatic help
to mastering engineers in training.

7 RELATED WORK

Machine learning classification techniques are popular in music,
where many researchers have attempted to classify different fea-
tures in music datasets like genre, instruments and mood. The most
popular methods for the classification of such features involve the
use of deep neural networks. Source separation techniques have
also been used with machine learning tools attempting to isolate
vocals, lyrics, and instruments. Although not as popular, mixing
and mastering research has recently started to get some traction
with machine learning techniques.

Convolutional neural networks have been used to classify non-
musical environmental sounds by Piczak [13]. In her paper, she
uses a convolutional neural network whose architecture consists of
a mixture of fully connected layers, max-pooling layers, and con-
volutional layers to classify three small datasets of environmental
sounds. The first, ESC-50, consists of 2000 short sounds of 50 classes;
the second, ESC-10, consists of 400 sounds of 10 classes from the
ESC-50 dataset; and the third, UrbanSound8K, with 8732 sounds of
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10 classes. Her model performed best on the UrbanSound8K dataset
with an accuracy of 73.7 percent, showing the validity of these
types of techniques.

Another example of classification techniques being applied to
environmental auditory events comes from the Tampere University
of Technology [7]. In their paper, deep neural networks are used
to recognize events like motorcycles, rain, or babies crying. The
dataset they used had 61 distinct classes with 1325 audio files. The
architecture used for the classification involved a network with
5 hidden fully connected layers with 70 neurons each, and was
trained using backpropagation. A pre training step of unsupervised
training was applied to the network before the supervised portion.
Their results achieved an accuracy of 64.6 percent which they com-
pared to 2 layer classifiers which performed at an accuracy of 60.2
proving the efficacy of deep neural networks on these types of
audio classification problems.

In a study related to music applications, researchers from the
university of Surrey, UK used deep neural networks to separate
singing voice from an audio file. They first attempt to estimate the
pitch of the voice to extract the component of the signal responsi-
ble for said pitch. By estimating the fundamental frequency of the
voice using a deep neural network, the use of the popular YINFFT
algorithm becomes much more effective. The researchers applied a
short term fourier transform to the audio file to obtain a spectro-
gram of the data. The data consisted of a mixture of a voice and an
additional signal, where the target for the neural network to predict
was the mask which when subtracted from the mixed signals would
produce the vocal signal. The data used was 200 audio files from the
iKala dataset, and the network was trained using SGD. The results
yielded much better performance for the YINFFT algorithm [15].

Similarly, Park and Lee train a convolutional neural network to
discriminate between music and noise audio files [12]. The data
used was converted into spectrogram format as in the previous
example. The architecture used for this neural network consisted
of 3x3 kernels for each convolution layers with max pooling. The
researchers used 450 different popular music audio tracks for the
music portion of the data and for the noise they used environmental
sounds, like restaurant ambiance or street traffic. The network was
trained using backpropagation and stochastic gradient descent. The
classification was close to perfect with an accuracy of 99.7 percent,
showing that the network learned how to distinguish music from
noise.

When working with audio, one may need to transform the data
into more useful representations to use with different existing mod-
els. Spectrograms are usually helpful with working with audio and
convolutional neural networks. Lonce Wyse provides a good sum-
mary of differing representations, especially spectrograms for audio
when working with convolutional neural nets. His research looks at
sonograms, spectrograms, and other representations and compares
their performance on different machine learning tasks as well as the
different kinds of information lost by each type of representation
[21].

McCormack et al. have also done work in the field of master-
ing and mixing in the use of dynamic range compression using
FFT representations of audio. They attempt to improve the use of
compressors in mixing by creating a compressor that works as a
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high resolution multiband dynamic range compression. Their work
could be used in automatic mixing applications. Their design uses
an STFT based implementation to maintain the time domain in the
audio representation [10].

8 CONCLUSION

This paper presented a machine learning-based approach that can
detect equalization operations performed on musical audio. The
main contributions of the paper are:

o A standard audio processing technique, such as STFT, and
a standard machine learning algorithm, such as gradient
boosting, is sufficient to recognize equalization operations
with high accuracy.

e A transfer learning approach using difference spectrograms
and a powerful image recognition model is not well suited
to this task.

e Our approach can be used to help with the training of mas-
tering engineers by automatically providing a rating of their
work, as well as suggestions on the equalization operations
to improve it.

There are several avenues for further research for our work:

e We plan to conduct further experiments with our methodol-
ogy using many more combinations of parameters in order to
study how our accuracy changes as we move in the space of
parameter combinations. This will hopefully help us improve
our approach even further.

e Our plan is to build a web-based version of the mastering
training tool in order to facilitate its use by the whole commu-
nity of music professionals online. This will allow us to fur-
ther understand the effectiveness of our approach, hopefully
spurring improvements that will make the tool a standard
part of the arsenal of music educators.

e We plan to investigate the possible use of difference spectro-
grams further by training a model from scratch using only
difference spectrograms as the input. It will be interesting
to see if such a model will perform closer to our gradient
boosting ones. Alternatively, we would like to experiment
with different image classifiers, such as the IBM Watson Vi-
sual Recognition service [4]. We were only able to use this
service for this work in a limited fashion, due to the limits
of a free account.

e We plan to expand this work to include other aspects of music
mastering, such as dynamic range compression, which is
often used to make a master consistently loud by increasing
the volume of the softer parts of a song.

o The work presented in this paper is a springboard for fur-
ther musical applications of machine learning. We’d like to
utilize the knowledge gathered from our mastering training
tool towards building models that can suggest equalization
operations for mastering even in the absence of a gold stan-
dard. Our models’ ability to detect equalization operations
can also be used for other musical applications, such as the
automatic mixing of songs.
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