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ABSTRACT
Perhaps the most important characteristic of deep neural networks
is their ability to discover and extract the necessary features for
a particular machine learning task from a raw input representa-
tion. This requires a significant time commitment, both in terms of
assembling the training dataset, and training the neural network.
Reusing the knowledge inherent in a trained neural network for a
machine learning task in a related domain can provide significant
improvements in terms of the time required to complete the task.

In this paper, we present our experience with such a transfer
learning situation. We reuse a neural network that was trained
on a real world image dataset, for the task of classifying music
in terms of genre, instrumentation, composer etc. (audio files are
converted to spectrograms for this purpose). Even though the image
and music domains are not directly related, our experiments show
that features extracted to recognize images allow for high accuracy
in many music classification tasks.
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1 INTRODUCTION
The decomposition of a set of objects into meaningful classes is a
problem that has attracted attention since the beginning of civi-
lization. Humans are intuitively good at determining the relevant
features that can help them to effectively cluster such a set. For
more advanced categorization tasks, supervised and unsupervised
methods have been developed to formalize the process of grouping
similar objects together, and improve its accuracy. Recently, the
advent of deep learning has produced highly effective approaches
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for the traditionally hard (for computers) problem of image classifi-
cation [8, 24]. However, the accuracy of these approaches relies on
the availability of powerful specialized hardware and large labeled
datasets.

When the number of available labeled data is not sufficient to
effectively train a neural network for a particular classification
task, it is still possible to use a network that has been trained for a
task in a related domain. For example, for a task where obtaining
labeled real world data is not easy, it may be possible to train a
model using simulated data and fine-tune it using the real data that
is available. Such an approach, where knowledge gained in one
domain is transferred to a new domain, is referred to as transfer
learning.

In a transfer learning scenario, the labeled data of the new do-
main may be used to re-train the whole network, part of it, or only
its output layer. In this paper, we concentrate on the latter option.
We refer to such an approach as black box transfer learning, since
we treat the trained network as a black box that receives the labeled
data as input and provides a vector of outputs to be used as inputs
to the last layer.

The goal of this paper is to investigate whether state of the art
image classifiers can be employed to solve classification problems in
themusic domain. For this purpose, we utilize several audio datasets
that we created specifically for this paper, as well as existing datasets
that have been used by other researchers. We convert the audio
clips in these datasets to spectrograms that are provided as input to
image classifiers that have been pre-trained with real world images,
such as images of everyday objects or animals. We treat the image
classifier as a black box and retrain only its output layer for each
specific classification experiment.

Our results show high accuracy for several of the classification
tasks we experimented with. In many cases, our transfer learning
approach performed as well as a special-purpose approach that used
direct domain knowledge by extracting features directly from the
audio (the special-purpose approach outperformed our approach
in other experiments). This shows that knowledge gained in the
real world image domain can be sufficiently transferred to the
spectrogram domain (and by extension to the audio domain) making
black box transfer learning a feasible and efficient approach.

The structure of the remainder of this paper is as follows: Section
2 presents the necessary background in audio signals and spectro-
grams, while Section 3 discusses related work in transfer learning
and music classification. The datasets we used, as well as the setup
for our experiments is presented in Section 4. We discuss the re-
sults of these experiments in Section 5. Follow-up experiments and
the related discussion is presented in Section 6. Finally, Section 7
concludes the paper and presents future work.
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Figure 1: A waveform of a birdsong showing 5 bird calls [2]

Figure 2: A spectrogram of a birdsong showing the distinct
harmonic spectra of 4 different bird calls [2]

2 BACKGROUND
Digital audio signals are stored using the pulse-code modulation
(PCM) method (.wav files contain PCM data). While this format is
great for storage and reproduction, it only stores the amplitude of
the signal at every sampling point. As a result, its visual represen-
tation, called a waveform (see Figure 1), only provides information
about the loudness of the signal at any given time. For most classifi-
cation tasks however, one needs to know the prominent frequencies
in the signal.

For this reason, the visual representation used for classification
purposes is that of a spectrogram. In a spectrogram, the x-axis is
still time, but the y-axis is frequency instead of loudness. The larger
the intensity of a pixel, the larger the magnitude of that frequency
in the signal. Colour can be added to a spectrogram to denote phase
information, as is the case in Figure 2. In this paper, we ignore phase
information as the human ear is insensitive to phase. 1

Figure 2 presents the spectrogram that corresponds to the wave-
form in Figure 1. It also showcases the fact that real world signals
have multiple frequencies present at any given time. In fact, even
if a single note is played on a piano, the resulting signal will con-
tain several frequencies, typically multiples of the lowest present
frequency, called the fundamental frequency. The distribution and
magnitudes of these frequencies is what gives each instrument its
distinct sound, its timbre.

Our conjecture is that a neural network that has been trained
with real world images, and has therefore learned to detect edges
and contours in them, should be able to distinguish the timbre
of different audio sources, such as various instruments, with high
accuracy if given a spectrogram as input. That is because the timbre
of a sound, i.e. the distribution of overlapping frequencies, creates
distinct patterns in a spectrogram. These patterns are, of course,
harder to distinguish in a complex piece of music featuring several
instruments playing at the same time, but our results show that our
classifier still manages to classify with high accuracy.

1Phase can have a significant effect when combining two or more signals. This situation
does not appear in our work.

It is also important to note that the visual representation we have
chosen for this paper will affect the accuracy of some classification
tasks more than others. For example, if the classes in a particular
classification task represent different levels of loudness, then maybe
the waveform would be a more appropriate representation. More
importantly, if the distinguishing feature between the classes is
timing as opposed to timbre, one should expect accuracy to degrade.

To illustrate this point, consider the spectrograms is Figure 3.
MIDI guitar was used to create the audio clip that corresponds
to the top two spectrograms, while MIDI piano was used for the
bottom two. The distinct timbre of each instrument is apparent (for
all clips a C major chord was repeated a few times), so one would
expect our classifier to perform well in an instrument classification
task.

On the other hand, the two spectrograms on the left correspond
to an audio clip where the C major chord is repeated in 3

4 time
(every third repetition of the timbre pattern is slightly brighter2.
Similarly, the two spectrograms on the right correspond to 4

4 time
(every fourth repetition is brighter). While it is possible to see the
distinction, one would expect that a neural network trained with
real world images would be more likely to learn to identify the
timbre pattern rather than the timing pattern.

In the next section, we present related work in transfer learning
and music classification before presenting our experimental setup
in Section 4.

3 RELATEDWORK
Transfer learning is the transfer of knowledge and skills between
domains. It uses knowledge gained in a source task to improve a
related target task. In classification tasks, it is often not possible to
collect the needed training data from scratch. This limited supply
of labeled training data is the inspiration for transfer learning.
This technique can significantly reduce the number of trainable
parameters in the target domain by transferring already trained
weights.

In deep neural networks, transfer learning is done by reusing the
pre-trained models and making adjustments per your own dataset.
This is done by removing the last layer of the network and adding
one or more new layers to the model (depending on your task).
The pre-trained model is then fine-tuned to solve the new problem.
Since the pre-trained network is assumed to be already trained in a
meaningful fashion, the weights of existing layers are not expected
to need significant re-training to converge (or may not be re-trained
at all as is the case with black box transfer learning). In this way, the
number of parameters that must be learned decreases significantly,
as does the amount of training necessary.

There are many examples where transfer learning is truly helpful.
For instance, transfer learning is used in human activity recogni-
tion in smartphones. The aim of activity recognition is to recognize
common human activities in real life such as monitoring nurses’
activities, elderly care activities, and human health. Activity recog-
nition systems require sufficient labeled training data and the short-
age of this training data degrades their performance. This problem
of insufficient data is solved by using the TransAct model which
helps recognize activities in a new environment by transferring
2This effect is more visible with piano
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(a) Guitar in 3
4 time (b) Guitar in 4

4 time

(c) Piano in 3
4 time (d) Piano in 4

4 time

Figure 3: Timing vs. timbre in spectrograms

knowledge from source data in a different environment [15]. This
model can identify activities with limited training data in the target
environment.

Another example is dermal image classification, where the three-
class skin lesion classification problem is investigated using transfer
learning. In this approach, the authors modified the pre-trained
AlexNet model [16] by replacing the last layer with their own layers
to make it compatible with their three-class problem. They also
added two dropout layers to avoid overfitting. [10].

One more example is sentiment classification, where the task
is to classify product reviews automatically, e.g. into positive and
negative perspectives for a brand of laptop. For this task, first the
reviews on items must be gathered and then a classifier is trained
on the reviews with their corresponding labels. To obtain meaning-
ful results, a large amount of labeled data is needed because the
wording of reviews for various types of items can be very different.
However, it is very expensive to do data-labeling. To reduce this
effort, transfer learning can be used by adapting a classification
model that is trained on some items to help learn classification
models for some other item [3].

Transfer learning has been successfully applied to many other
applications, such as heterogeneous transfer learning for image clas-
sification by exploring knowledge transfer from auxiliary unlabeled
images and text data [28], Latin and Chinese character recognition
[7], detecting a user’s device location based on previously collected
WiFi signals [22], lung pattern analysis [6], visual categorization
[19], and so on. More detail on transfer learning applications can
be found in a survey by Sinno Jialin Pan and Qiang Yang [21].

There are also many examples where transfer learning is used
in Music Classification. Hamel et al. [13] proposed an approach for
genre classification using feature representation transfer learning.
They considered 4 distinctive datasets, each containing between
1000 to 3180 sound tracks, from 10 seconds in length to full song. To

transfer knowledge between tasks, they learned a latent represen-
tation that was shared across tasks. This representation is learned
by using an embedding method which consists of embedding both
the features and the labels through transformation in a common
space. The experiments are performed by extracting mel-spectrum
features from audio. Their experiments showed that by transfer-
ring a representation between tasks, the classification accuracy
can meaningfully improve when the number of training examples
is inadequate. Our approach is different because the transfer is
between more distant tasks, i.e. real world image classification to
music classification.

Lee et al. [17] proposed a convolutional neural network (CNN) ar-
chitecture for music auto-tagging with multi-level and multi-scaled
features, i.e. with tags that are highly varied and have different lev-
els of abstraction. Their approach is similar to image classification
by taking 2D audio spectrograms as input data. This architecture is
trained in three steps. First, the local audio features are captured
using a set of CNNs, trained in supervised manner with the tag
labels, taking different input sizes. Second, the audio features are
extracted from all layers of the pre-trained CNNs and aggregated
into a single feature vector. Lastly, the final prediction of tags is
performed from the aggregated feature vector by putting them in
a fully-connected neural network. This architecture can perform
transfer learning by conducting the first step with one large dataset
and the last two steps with another dataset. It also features a smaller
distance between the sourse and the target task than our approach.

Another example of transfer leaning in music classification is an
approach in which the authors, Choi et al., used a convolutional
neural network which has already been trained for a source task, in
this case music tagging. Input to the network is mel-spectrograms
of the audio to be classified. They extract features from all convolu-
tional layers and these features are concatenated to form a single
vector called the convnet feature. This feature is then used to train
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another network [5] . Our approach is simpler because we are using 
an already trained CNN and replacing the last layer with a new 
layer to make it compatible with our domain.

Finally, Van den Oord et al. [27] considered the problem of trans-
fer learning by supervised pre-training for audio-based music clas-
sification as well. First, they learned low-level features from audio 
spectrograms to train a supervised model for a source task, using 
the K-means algorithm. Next, these trained models were used to 
extract higher level features from other datasets that were used to 
train the target task.

Other work on transfer learning in music information retrieval 
include content-aware collaborative music recommendation sys-
tems in which a neural network was trained on semantic tagging 
information as a content model and was used as a prior in a col-
laborative filtering model [18], and convolutional recurrent neural 
networks for music classification [4].

4 EXPERIMENTAL SETUP
In order to train, validate, and test a classifier, one needs a dataset 
with sufficient number of labeled data for each of the classes. For 
this paper, we use several such datasets in our experiments. These 
include datasets that we created specifically for this research, as 
well as datasets that have been prepared by other researchers and 
have been presented in other publications. The datasets we created 
contain approximately 600 audio clips in each class, a number that 
has been shown to be sufficient in transfer learning tasks [9, 25]. 
Our datasets are:

(1) Genre dataset: This dataset contains approximately 600 full-
length songs in each of the following classes: Classical, Rock,
and Metal. The genres were chosen so as to contain a pair
of genres (Classical and Metal) that should be easily distin-
guishable by a human expert, as well as a pair of genres
(Rock and Metal) where overlap was a lot more likely. Genre
classification is one of the most common music classification
tasks, which is why our first dataset addressed this problem.
We also created a version of this dataset that contains only
30 seconds from each song (to avoid misrepresenting the
song due to long fade-ins we chose seconds 30 to 60). We
refer to this version as the Short Genre dataset.

(2) Instrument dataset: This dataset contains approximately
600 audio clips in each of the following classes: Acoustic
Guitar, Classical Guitar. The two instruments were chosen
because they are close in nature, but still distinguishable due
to the different timbre of steel strings (acoustic guitar) to
that of nylon strings (classical guitar). Each clip is 30 seconds
long and the guitar is the only instrument, i.e. there are no
vocals or other instruments.
This classification task is related to genre classification as dif-
ferentiation will be based on timbral patterns. The selection
of the two instruments was meant to provide a challenge for
our classifier.

(3) Vocalist dataset: This dataset contains approximately 600
audio clips in each of the following classes: Female, Male.
Each 30-second clip is part of a song with full instrumenta-
tion that features a vocalist singing either unaccompanied or
with background vocals. The clips were created so that they

feature singing throughout, and they cover a wide variety
of genres (pop, rock, country, folk, rap etc.)
This dataset was created as an even harder challenge for our
classifier. While female and male vocals differ in timbre, the
remaining instruments would superimpose timbral patterns
that would be common between the two classes. We wanted
to see how well our classifier can handle this situation.

(4) Composer dataset: This dataset contains approximately
600 audio clips in each of the following classes: Beethoven,
Mozart. The two composers were chosen due to their prolific
nature, as well as the fact that they are likely to use similar
instrumentation (Beethoven was born only 14 years after
Mozart). The clips span a wide variety in terms of record-
ing quality, instrumentation, and musical form, i.e. concerts,
sonatas, opera etc. Each clip is 30 seconds long.
This dataset was meant to be the hardest challenge for our
classifier. Only expert human classifiers would be able to
perform well in such a task, and the distinction would not be
based on timbral patterns but on higher level audio features,
such as musical motifs, global structure etc. We expected our
classifier to perform poorly in this task.

The existing datasets we used are:

(1) Extended Ballroom dataset [20]: This dataset contains au-
dio clips in each of the following classes: Chacha, Foxtrot,
Jive, Pasodoble, Quickstep, Rumba, Salsa, Samba, Slowwaltz,
Tango, Viennesewaltz, Waltz, Wcswing. Each clip is 30 sec-
onds long. For 9 of these classes, the cardinality of each class
varies from 252 to 529, while the remaining 4 are smaller
(cardinality varies from 23 to 65). For this reason, we also
experimented with subsets of this dataset that contain its
largest classes. We refer to the full dataset as Ballroom,
while subsets contain the number of classes as a suffix, e.g.
Ballroom9 contains the 9 largest classes only.

(2) NSynth [11]: This is a large dataset that contains 305,979
audio clips. Each clip is 4 seconds long and it contains a
single note. The notes contained include all notes in western
music played in a large variety of acoustic, electronic, or
synthetic instruments at 5 different velocities per note. We
used parts of this dataset to create the following datasets for
our experiments:

(a) NSynth Family: This dataset contains 880 audio clips in
each of the following classes: Acoustic, Electronic, Syn-
thetic. Each class contains the full range of 88 notes that
can be produced on a piano played at 5 different velocities
on various acoustic, electronic, or synthetic keyboards.

(b) NSynth Instrument: This dataset contains at least 650
audio clips in each of the following classes: Brass, Flute,
Guitar, Keyboard, Mallet, Reed, String, Vocal. All clips in
the dataset are from the acoustic family of instruments.
There are small differences in the cardinalities of the classes
as some instruments cannot produce the full range of west-
ern pitches.

(c) NSynth Organ: This dataset contains 440 audio clips in
each of the following classes: Electronic Organ 1, Elec-
tronic Organ 2. The only difference between the clips in
the two classes is that they are produced by a different
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Table 1: Numerical details about the datasets used in this paper

Dataset Number
of classes

Sorted
Cardinalities Clip length

Genre 3 600,600,600 Variable: Full songs
Short Genre 3 600,600,600 30 sec
Instrument 2 600,600 30 sec
Vocalist 2 600,600 30 sec
Composer 2 600,600 30 sec
Ballroom 13 529,507,497,470,468,464,455,350,252,65,53,47,23 30 sec
NSynth Family 3 880,880,880 4 sec
NSynth Instrument 8 880,880,880,760,730,690,670,650 4 sec
NSynth Organ 2 440,440 4 sec

instantiation of the same instrument, an electronic organ.
This should correspond to the smallest differences in tim-
bre present in the NSynth dataset.

Table 1 presents a concise description of all datasets used in this
paper.

For every dataset described above, we experimented with two
different versions:

(1) Unprocessed. In this version, the clips are as originally
recorded.

(2) Normalized. In this version, each clip has been normalized
so that the maximum peak loudness is 0dB FS. The reason
for the normalization is so that the classifier cannot utilize
loudness for classification. For example, classical music clips
are typically less loud than metal ones. The normalization
process makes all clips have the same maximum loudness
(average loudness may still differ depending on the dynamic
range of the clip).

In the following, we refer to each dataset as described above, e.g.
the Unprocessed Short Genre dataset, or the Normalized Instrument
dataset.

To begin each experiment, all music files are converted to spec-
trograms using the asperes tool [1]. The conversion process uses a
logarithmic frequency scale with 12 bands per octave, which is ap-
propriate for musical signals. The spectrograms created by asperes
are black and white. We experimented with color spectrograms
created by sox [12], where the intensity of the magnitude of each
frequency band is represented by a distinct colour rather than a
greyscale value, but there was no significant effect in the results
presented in the next section.

Once all music clips have been converted to spectrograms, the
music classification problem is transformed to an image classifi-
cation problem. We can then apply existing image classifiers. For
this paper, we used the Inception-v3 classifier [24], as it is freely
available and open source. Inception-v3 is trained for the ImageNet
Large Visual Recognition Challenge using the data from 2012. This
is a standard task in computer vision, where models try to clas-
sify entire images into 1000 classes, like “Zebra”, “Dalmatian”, and
“Dishwasher” [14]. We removed the last layer and replaced it with
a fully-connected layer that reduces its input vector that contained
2048 features to an output vector whose size matched the number
of classes in each experiment.

The same hyper-parameters were used across all experiments
to avoid introducing bias. All parameters were set at their default
value, with the exception of increasing the number of training
iterations to 8000.

In the next section, we present the results we obtained with our
approach on all the datasets described above. These results led us to
conduct further experiments with modified versions of our datasets.
We present these modified datasets and their results in Section 6.

5 EXPERIMENT RESULTS
Table 2 presents all the results we obtained from the Inception
v3 classifier for the datasets presented in the previous section. It
also presents accuracy results from a baseline classifier. This clas-
sifier uses input produced by Marsyas [26], a well-known audio
feature extraction tool that extracts relevant features directly from
the audio signal. These features were used as input to a Random
Forest classifier that performed the classification. As it is based
on a special-purpose system for audio classification, we expected
that the baseline classifier would be more accurate than our ap-
proach, and act as an indication of the ceiling of a black box transfer
learning approach for music classification.

Before discussing these results, it is important to note that, due
to randomization, subsequent runs of the same experimental setup
may produce slightly different results. These differences were never
more than two percentage points. In Table 2, we report the average
accuracy value over 5 runs. We also do not consider differences in
accuracy that are smaller than 2% to be significant.

The same results are presented in graph form in Figures 4 and 5.
Based on these results, there are a number of observations that

can be made:

(1) Overall, the results clearly indicate that a black box transfer
learning approach, such as the one employed in this paper,
can be very effective in a variety of music classification tasks.
We discuss individual experiments below, but the achieved
accuracy led us to design a further experiment to stress
the limits of our approach, as even the accuracy for the
Composer dataset was higher than we expected. We present
this experiment in the next section.
With regard to our baseline, it was very encouraging to
see that our approach performed at the same level in many
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Table 2: Accuracy results for the Inception v3 and the baseline classifier

Dataset Number of
Classes

Inception v3
(Unprocessed)

Inception v3
(Normalized)

Baseline
(Unprocessed)

Baseline
(Normalized)

Genre 3 87.2 85.8 97.1 97.0
Short Genre 3 86.8 87.4 85.8 85.6
Instrument 2 96.3 89.4 97.3 97.4
Vocalist 2 78.2 77.6 96.9 96.7
Composer 2 64.5 73.9 80.9 81.9
Ballroom 13 54.8 62.3 54.8 54.7
NSynth Family 3 96.6 100.0 100.0 99.6
NSynth Instrument 8 97.3 97.1 99.7 100.0
NSynth Organ 2 100.0 100.0 100.0 100.0

Figure 4: Accuracy results for Unprocessed Datasets

Figure 5: Accuracy results for Normalized Datasets

experiments, and even outperformed a special-purpose ap-
proach in the case of the Normalized Ballroom dataset. To be
sure, the baseline approach performed clearly better in some
experiments, such as with the Genre and Vocalist datasets.

(2) The Genre dataset was our pilot dataset. We used it to gauge
the feasibility of our approach, as well as to determine how
important of a factor is the length of the audio input.
When classifying Metal and Classical audio clips only, the
accuracy of our approach was 99.1%. Even when another
genre, such as Rock, was added to the classification task,
the accuracy remained high as shown on the table. This

indicated to us that our approach has merit leading to the
rest of the experiments.
The results for the Short Genre dataset, when compared to
that for the Genre dataset, demonstrate that the accuracy
of our classification is not impacted when the length of the
audio input is reduced to 30 seconds as opposed to a whole
song. This allowed us to perform the rest of the experiments
using audio clips that are 30 seconds long, which sped up
the process of converting audio to spectrogram significantly.
It is very interesting to note that the performance of the
baseline classifier dropped significantly when the length of

206



Transfer Learning in Neural Networks: An Experience Report CASCON 2017, November 2017, Markham, Ontario, Canada

the input audio was reduced to 30 seconds. This indicates
a level of robustness with our approach that does not exist
in the baseline classifier, something we plan to investigate
further in the future.

(3) Normalizing the audio clips in the datasets to equal loudness
has yielded a variety of results. To start with, normalization
had no noticeable effect for the baseline classifier. This is
probably due to a normalization internal stage that takes
place prior to feature extraction.
When it comes to our classifier, in some cases, such as the
Genre or Vocalist dataset, normalizationmakes no significant
difference. For the Instrument dataset, normalization has
degraded the accuracy of our approach. However, for the
Composer and Ballroom datasets, normalizing improves the
results.
A possible explanation for this phenomenon is the following:
If the various classes in a dataset differ in loudness, the neu-
ral network may use this information to its advantage. For
example, if the acoustic guitar clips in the Instrument dataset
are consistently louder than the classical guitar ones, the
network may use this confounding factor to classify rather
than the timbre of the instrument. Normalizing for loudness
would remove this extra help and lower the accuracy.
On the other hand, normalization to 0dBFS involves raising
the overall loudness of an audio clip. This results in the
corresponding spectrogram being much brighter, as if the
exposure of the image was increased (see Figure 7 in the next
section for an example). This makes the timbral patterns in
the spectrogram more pronounced, i.e. more “visible” to the
classifier. This should improve accuracy (assuming there was
no confounding as described above in the unprocessed audio
clips).
To determine whether the above hypothesis holds, we con-
ducted a loudness study for our datasets. We present the
outcome of that study in the next section.

(4) The Ballroom dataset yielded the results with the lowest
accuracy. There are several possible reasons for this. First,
it is the dataset with the largest number of classes (13). Sec-
ond, some of these classes contain a very small number of
clips (less than 70 for four of the classes). It is practically
impossible for a neural network to learn with such a small
sample number. Finally, what distinguishes these classes is
the timing of the music, rather then the instrumentation
which is often similar. To investigate these factors, we con-
ducted further experiments with this dataset (presented in
the next section).

(5) The results for the NSynth dataset confirm our hypothesis
that a neural network that has been trained with real world
images will be able to distinguish the timbre of different
instruments. Each clip in the NSynth dataset contains a sin-
gle note from one instrument. The music classifier has no
problem classifying these correctly as they contain easy to
identify patterns (see Figure 6).

Before moving on to the follow-up experiments, it is important to
note that each of the experiments presented in this section required
only a few minutes to propagate the spectrogram input through the

Figure 6: Spectrograms of an acoustic, electronic, and syn-
thetic keyboard respectively playing the same note at the
same velocity (from the NSynth dataset)

pre-trained neural network, and an hour or two (depending on the
size of the dataset) for the last layer classification. The CPU used
was a dual Intel X5660 processor (no GPU). This is significantly
faster than training a neural network from scratch which would
require significantly more processing time on specialized hardware,
such as GPUs.

6 FOLLOW-UP EXPERIMENTS
Our first follow-up experiment concentrated on investigating the
limits of our black box transfer learning approach by preparing a
classification task that it would be ill-prepared to handle. Since a
network trained on real world images would likely be insensitive
to small changes in brightness, we rearranged the Ballroom dataset
into 5 new classes with regard to the RMS loudness of each clip. For
example, class Loud1 contained the one fifth of the audio clips that
were the quietest, while class Loud5 contained the loudest clips
etc. (loudness in the audio domain corresponds to brightness in the
spectrogram domain).

The classification results confirmed our expectation that this
would be a hard task for our classifier. We obtained an accuracy of
35.2%, by far our worse result. It is important to note however, that
human error would probably be quite high for this dataset as well, as
the boundary between classes is rather arbitrary. Accordingly, when
we restrict the classification task to only two classes, Loud1 and
Loud5, our accuracy increases to 79.5%. This means that our worse
binary classification result remains the Composer dataset, which
was the dataset we originally created to challenge our approach
(73.9%).

Our next follow-up experiment involved the Ballroom dataset,
for which we had the poorest results. We started by determining
whether the fact that some of the classes had low cardinality was
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Table 3: Accuracy results for Normalized Ballroom subsets

Dataset Cardinalities Number of classes Accuracy
Ballroom9 >100 9 63.5
Ballroom8 >300 8 64.8
Ballroom7 >400 7 72.7
Ballroom2 >500 2 96.0

responsible for the low accuracy. Table 3 presents accuracy results
with subsets of the Normalized Ballroom dataset that were created
by removing classes with low cardinality. The choice of subset was
driven by how closely cardinalities were clustered, i.e. we did not
want to arbitrarily remove classes with similar cardinality to classes
that would remain.

The results show some improvement but in most cases this can
be attributed to the fact that there are fewer classes, i.e. less chance
of error. Interestingly, when the dataset is reduced to two classes
(Foxtrot and Waltz), we get the highest accuracy result for a nor-
malized dataset (with the exception of NSynth). We believe this is
due to distinct timbral elements in the two classes. Investigating
the significance of this result is part of our future work.

We also conducted a further experiment with the Ballroom9
dataset to investigate whether data augmentation can improve our
results. For this purpose, we created 8 copies of each audio clip in the
dataset and normalized each clip to a different level at 5dB intervals.
The quieter copy was normalized at -35dBFS (barely audible) and
the loudest at 0dBFS (loudest possible without clipping). We then
concatenated these 8 copies from quietest to loudest and created
spectrograms for the augmented clips. Figure 7 presents an example.

When classifying with the augmented spectrograms as input to
our black box transfer learning approach, the obtained accuracywas
68.1%, 4.6% higher than the non-augmented normalized version.
It is possible that the clip repetition (even at different levels of
intensity) is helpful to the neural network. A thorough study of
how augmentation affects accuracy is part of our future work.

Our last follow-up experiment pertains to the effect of normaliza-
tion to the accuracy of our approach. For this purpose, we computed
the RMS loudness for every audio clip in our datasets and aggre-
gated the results for every class. Table 4 shows the loudness data
for most of the classes in our datasets (we omitted the 4 smallest
classes in Ballroom, as well as the NSynth datasets where accuracy
was already very high).

The data in Table 4 support the hypothesis outlined in the previ-
ous section. In particular, the two datasets that exhibited the most
improvement due to normalization (Composer and Ballroom) are
also the two datasets where loudness variations between classes
are the smallest. In that case, normalization would not introduce
bias, since all files will be affected similarly. This indicates that
the improvement in accuracy is due to the timbral patterns in the
spectrogram becoming more “visible” to the classifier.

On the other hand, the only dataset that showed a decline in
accuracy due to normalization (Instrument), is also an outlier in
terms of loudness disparity between its two classes (we have to go
past one standard deviation in both distributions to have overlap).
This indicates that the unprocessed dataset is closer to Acoustic vs
Silence rather than Acoustic vs Spanish. After normalization, we get

Table 4: RMS Loudness values for several of the classes in
our datasets

Dataset : Class RMS Loudness
(Average)

RMS Loudness
(Std Deviation)

Genre : Classical 0.06 0.03
Genre : Metal 0.21 0.08
Genre : Rock 0.16 0.06
Short Genre : Classical 0.06 0.03
Short Genre : Metal 0.20 0.09
Short Genre : Rock 0.15 0.07
Instrument: Acoustic 0.09 0.06
Instrument : Spanish 0.02 0.01
Composer : Beethoven 0.06 0.03
Composer : Mozart 0.06 0.03
Vocalist : Female 0.14 0.07
Vocalist : Male 0.18 0.10
Ballroom : Chacha 0.21 0.04
Ballroom : Foxtrot 0.17 0.05
Ballroom : Jive 0.22 0.05
Ballroom : Quickstep 0.19 0.05
Ballroom : Rumba 0.19 0.05
Ballroom : Samba 0.21 0.05
Ballroom : Tango 0.18 0.06
Ballroom : Vien. Waltz 0.19 0.06
Ballroom : Waltz 0.15 0.05

an accuracy measurement more in line with the other experiments,
since the confounding associated with quietness is removed.

Finally, datasets that were not significantly affected by the nor-
malization process, such as Genre and Vocalist, were somewhere
in the middle in terms of loudness distribution and exhibited high
values of standard deviation. This would seem to indicate that both
phenomena outlined above occurred at the same time and counter-
balanced each other. In other words, accuracy increased because
the timbral patterns became more apparent, and at the same time
decreased because classification was not aided by similarity to si-
lence.

This last experiment shows clearly that normalization prior to
classification of audio clips is necessary. Its benefits are twofold:

(1) Accuracy is increased because the timbral patterns in the
spectrogram become more “visible” when loudness is raised.

(2) Unfair bias is removed for classes that are significantly qui-
eter than others.

7 CONCLUSION
This paper presented a black box transfer learning approach to
music classification by transferring knowledge gained by classifying
real world images. The main contributions of the paper are:

• We showed that our approach is feasible, efficient, and ac-
curate. By utilizing the minimum amount of domain knowl-
edge possible, it can provide results that often equal those
of special-purpose approaches.

• We showed that spectrograms are an appropriate represen-
tation for classification tasks that rely on timbral patterns.
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Figure 7: A spectrogram of 8 concatenated copies of an audio clip at different normalization levels. Note that the first few
copies are barely visible

• We showed that our approach is more robust with regard
to the length of a music clip, as our accuracy is not affected
when it is reduced to 30 seconds (as opposed to the baseline
classifier).

• We demonstrated the importance of normalizing music clips
to 0dB FS to increase accuracy and remove confounding
factors.

• We showed that data augmentation can be an important ally
in music classification tasks.

There are several avenues for further research in this domain:

• Try different image representations for audio, such as wave-
forms, or spectrograms that contain phase information en-
coded as colour. Even though humans are insensitive to
phase, our neural network has been trained with colour im-
ages. It would be interesting to see how it responds.

• Use a different pre-trained neural network, either one with
a different and/or larger architecture, or one trained with a
larger image dataset.

• Investigate data augmentation further. There are many pos-
sibilities on how to preprocess the spectrograms that could
affect our accuracy results. We intend to experiment in this
regard.

• Use our black box approach as a building block for a more
elaborate classifier architecture, e.g. something similar to
Sequential Minimal Optimization (SMO) [23], where each
binary classifier is our black box.

• Try a different image classifier, such as the IBM Watson
Visual Recognition service [8]. We were only able to use this
service for this work in a limited fashion, due to the limits
of a free account. However, preliminary results were very
encouraging, especially when it comes to efficiency, so we
intend to investigate further in the future.

• Experiment with different flavours of transfer learning, such
as adding multiple layers to replace the original network’s
last layer, or re-training the whole network in the new do-
main.
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